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2 RICHARD PELTIER
1. INTRODUCTION

For at least the past 10¢ yr, and most probably for the past 3 X 10° yr,
the Northern Hemisphere continents near the rotation pole have been sub-
jected to a continuous cycle of glaciation and deglaciation. During this
Pleistocene period, in which the first manlike fossils are to be found in
deposits from East Africa dated at about 3.0 X 108 yr B.P., vast continental
ice sheets have waxed and waned on a regular time scale of about 107 yr
(e.g.. Broecker and Van Donk, 1970). At each glacial maximum the mass
contained in these transient ice complexes has been on the order of 10"
kg, equivalent to a global drop of sea level of approximately 10* m, which
is itself approximately | part in 10° of the entire mass of the planet. It
should not be surprising, given the vast dimensions of this naturally recur-
ring phenomenon, that it has inspired an intense interest not only among
members of the geological and geophysical communities but also among
atmospheric scientists, zoologists, botanists, and archaeologists, to name but
a few of the disciplines whose members have made important contributions
to its understanding. Although the Ice Age industry, begun by the Swiss
zoologist Louis Agassiz over 150 years ago, has matured considerably since
Agassiz’ time, it has yet to provide a fully satisfactory explanation either
for the occurrence of the Ice Age itself or for the quasi-periodic life cycle
of its major ice sheets. The purpose of this paper is to provide a geophysical
perspective on the current state of this industry, to summarize what we
“know” or think we know because of our employment in it, and to attempt
to reveal as clearly as possible the issues which remain to be settled as effort
continues.

The geophysical importance of the Ice Age is connected both with the
magnitude of the stress to which the planet was subjected in consequence
of the growth of individual ice sheets on its surface and with the time scale
over which these surface loads were applied. Because of the magnitude of
the loads, the deformation of the planet’s shape effected by mutual gravi-
tational attraction between load and planet was sufficiently large as to leave
easily observable effects in the geological record. Because of the duration
of individual loading events, on the other hand. the strains produced by
loading are not entirely elastic in nature. Indeed. the 10%-yr time scale is
such that the total deformation is dominated by an effectively viscous re-
sponse to the gravitationally induced stress field, a viscous response through
which the coupled system tends inexorably toward a state of isostatic (grav-
itational) equilibrium. Although the concepts of isostasy and isostatic ad-
justment are crucial to the understanding of a wide variety of geophysical
observations (e.g.. the lack of a gravity anomaly associated with the contrast
between continents and oceans, the lack of a gravity anomaly associated
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with large mountain complexes, and the observed ratio of the Bouger gravity
anomaly over continents to the topography as a function of topographic
wavelength), virtually all of these observations refer to the properties of the
planet in the fully adjusted (isostatic) state. The observations associated with
the phenomenon of glacial isostatic adjustment. on the other hand, are
geophysically unique in that they not only provide evidence for the existence
of this process but also provide us with quantitative information concerning
the rare at which isostatic adjustment proceeds.

If the elastic properties and density of the earth are considered fixed by
the frequencies of its elastic gravitational free oscillations (e.g.. Gilbert and
Dziewonski, 1975), then the rate of isostatic adjustment is governed by a
single physical parameter—the effective viscosity of the planetary mantle.
Even in Wegener’s (1926) book “The Origin of Continents and Oceans.”
in which the complete (for the time) range of arguments in favor of the
hypothesis of continental drift was first put forward, the observation of
delayed vertical motion associated with the Fennoscandian deglaciation was
included as the central argument in favor of the ability of mantle material
to deform as a viscous fluid in spite of the fact that it has a seismically
observed shear modulus approaching that of cold steel. Wegener argued
that if such apparently viscous vertical motion could occur then similar
horizontal motion should also be possible. Continents composed of rela-
tively low-density granitic material surrounded by a more dense viscous sea
of mafic or ultramafic material might then be considered analogous to blocks
of ice floating in water. Although Wegener’s hypothesis was considered to
be quite disreputable in many if not most geological circles until the early
1960s, a torrent of new geophysical discoveries beginning at that time (par-
ticularly in paleomagnetism and seismology) quicklv enforced a new con-
formity to it. Today. of course, this hypothesis is firmly entrenched as the
paradigm in terms of which most geological and geophysical research is
organized. The importance of the study of glacial isostatic adjustment to
the internal self-consistency of this paradigm remains what it was in We-
gener’s time. It is the only reliable method we have of obtaining a direct
in situ measurement of the viscosity of the planetarv mantle and of deter-
mining its variation with depth. This parameter is a crucial variable in
modern thermal convection theories of the drift process itself (Peltier,
1980b: Jarvis and Peltier, 1982).

The first quantitative attempt to infer the viscosity of the mantle from
isostatic adjustment data was that by Haskell (1933. 1936, 1937), who was
followed immediately in this work by Vening-Meinesz (1937). Both authors
emploved a Newtonian viscous half-space model of the earth with constant
density and viscosity and inferred an effective viscosity from the observed
recovery history of Fennoscandia following the deglaciation event which
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began ca. 20 kyr B.P. The value of the viscosity which they inferred was
very near 10?' Pa sec. Since no direct method of determining the ages of
individual strandlines required to determine the history of uplift was then
available. it is a testimony to the excellence of the varve-based chronology
reported by Lidén (1938; see Morner, 1980) that application of modern
direct methods of dating to the stratigraphic sequence has led to no signif-
icant alteration of the value of the upper mantle viscosity which is inferred
from the data. The advent of the radiocarbon method of dating (Libby.
1952) has nevertheless had a profound effect upon the study of glacial isos-
tasy by removing the necessity of possessing such detailed stratigraphic in-
formation to control the time scale. The first application of "*C dating in
the construction of relative sea level (RSL) histories of which I am aware
is that by Marthinussen (1962) in a study of the shorelines of northern
Norway. Elsen’s (1967) reconstruction of the history of North American
glacial Lake Agassiz (which was centered on the present lakes Winnipeg
and Winnipegosis in the Canadian province of Manitoba) using *C dating
is also a noteworthy early contribution. The 5730 (£40)-yr decay time for
the beta disintegration of “C ("*C — 8~ + "N*) makes the method per-
fectly suited to the study of the sea level record during the past 20 kyr since
glacial maximum. Very recently devised accelerator-based techniques for
'4C dating. which count atoms directly (Litherland, 1980), are expected to
gradually replace conventional f-counting in many applications. These new
methods make it possible to obtain dates from much smaller samples (<1
mg) than can by analyzed conveniently using the method developed by
Libby and his co-workers.

Since the pioneering studies of mantle viscosity by Haskell and Vening-
Meinesz there have been an enormous number of similar investigations
reported by other workers using either the same data set or similar infor-
mation from other geographic locations. The most important locations out-
side of Fennoscandia include the North American continent as a whole
(the northern half of which. Canada, was covered by the huge Laurentide
ice sheet at 20 kyr B.P.) and the region surrounding the much smaller scale
glacial Lake Bonneville, which was located in what is now the state of Utah
in the Basin and Range geological province. Taken together with the data
from Fennoscandia, the observations from these regions provide informa-
tion on the isostatic adjustment of horizontal scales of surface deformation
ranging over a full order of magnitude from a few hundred to a few thousand
kilometers. Since the horizontal scale of the adjusting region in part deter-
mines the vertical extent of the flow through which isostatic adjustment
takes place, the existence of data covering such a wide range of spatial scales
promises the capability of using it to infer the vanation of viscosity as a
function of depth in the mantle. Until rather recently, the scientific results
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obtained through inversion of the combined data set have proved to be
extremely controversial.

The Newtonian viscous half-space model of Haskell and Vening-Meinesz
predicts that a sinusoidal surface deformation with horizontal wave number
ky should decay exponentially in time with decay constant r = 2vky/pgs,
in which v is the viscosity, p the density, and g the surface gravitational
acceleration. Van Bemmelen and Berlage (1935), working at the same time
as Haskell and on the same data set, assumed that isostatic adjustment was
confined to a thin channel near the surface of depth A. Their analysis showed
the relaxation time for this model to be = = (12»/pg*)(1/k ) and thus to
depend inversely upon the square of deformation wave number. Assuming
h to be 100 km, they inferred a viscosity of » = 3 X 10'® Pa sec [1 Pa sec
(SI units) = 10 P (cgs units)]. Although the flaws in this thin-channel model
(low near-surface viscosity in spite of low near-surface temperature, inability
to fit relaxation amplitude and relaxation time simultaneously, etc.) are
much more evident today than they were in the late 1930s, the model
nevertheless disappeared from the early literature for some time. Its later
resurrection may be attributed to Crittenden (1963). Crittenden had com-
piled data for the relaxation associated with the disappearance of Pleistocene
Lake Bonneville and discovered that although the spatial extent of this
region differed by an order of magnitude from that of Fennoscandia, the
relaxation times for the two regions differed only slightly—both being on
the order of 5000 yr. These results seemed to Crittenden to support the idea
of thin-channel flow, since Haskell's model predicted that relaxation time
should increase continuously with wave number whereas the channel model
predicted a decrease. Even in 1963 there was therefore a body of informed
geophysical opinion which considered that the effective viscosity of the earth
was anomalously low in the coldest laver immediately adjacent to the
surface!

The controversy over simultaneous interpretation of the Lake Bonneville
and Fennoscandia data inspired the work of McConnell (1968), who realized
that the increasing confinement of the flow to the near-surface region as
wavelength decreased which these data seemed to demand did not require
infinitely rigid material beneath some critical depth but could be accom-
modated by a model in which viscosity increased smoothly. His was the
first attempt to use the 7(ky) information contained in the Fennoscandia
data to directly constrain the »(depth) profile, and many of his conclusions
remain valid today. The only novel feature which McConnell’s model con-
tained was a “lithospheric™ laver at the surface in which the viscosity was
infinitelv high but whose thickness was variable. He found that the relax-
ation spectrum 7(ky) extracted from the Fennoscandia data required the
presence of such a layer and constrained its thickness to be near 120 km.
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Although the required presence of such a layer agrees in a satisfying way
with modern a priori expectation based upon knowledge of the temperature
dependence of viscosity and the fact that temperature increases markedly
with depth near the planetary surface, the picture is nevertheless rather
different from that advocated in the model of Van Bemmelen and Berlage
and supported by Crittenden. As demonstrated by McConnell, the presence
of the thin surficial elastic lithosphere modifies Haskell’s model in such a
way that for wavelengths shorter than a few times the lithospheric thickness,
relaxation time is forced to decrease with increasing deformation wave num-
ber. Modern theory, discussed in Section 3, shows the effect to be such that
the spatial scales of Fennoscandia and Lake Bonneville straddle the max-
imum in the 7(ky) spectrum and thus have comparable relaxation times
though their spatial scales are separated by an order of magnitude (see
Fig. 13).

The results obtained by McConnell (1968) for the viscosity stratification
beneath the lithosphere have not proved as immune to later analvsis as have
his inferences concerning the lithosphere itself. McConnell found that the
7(ky) data from Fennoscandia, determined by the spectral decomposition
of Sauramo’s (1958) shoreline diagram, required an upper mantle viscosity
which is very nearly constant and equal in magnitude to 10°' Pa sec
(10 P), the same value previously inferred by Haskell. He was aware that
the r(ky) data themselves were insensitive to viscosity structure beneath a
depth of about 600 km, a fact which was later demonstrated by Parsons
(1972) using the formal resolving-power analysis developed by Backus and
Gilbert (1967, 1968, 1970). In order to constrain the viscosity profile beneath
this depth. McConnell was obliged to invoke extra information. What he
did was to assume that a so-called nonhydrostatic bulge existed: that is, that
the polar flattening of the planet (produced by the centrifugal force) was
in excess of that which would be in equilibrium with the current rotation
rate, an idea which had been advocated by Munk and MacDonald (1960).
He further assumed that the excess bulge was produced by glaciation. (Al-
though this assumption is incorrect, we show in Section 6 that there are
nevertheless important observable effects of deglaciation upon the earth’s
rotation which can be employed to constrain mantle viscosity.) It followed
to McConnell from the existence of the bulge that it must have been relaxing
very slowly and therefore that the relaxation time of the degree-two har-
monic was in excess of 7 = 0(10%) yr. This requires a high value for the
viscosity beneath 670 km depth (the lower mantle). and McConnell de-
scribed models in which the lower mantle viscosity was constrained to be
in excess of 107 Pa sec (10** P). McKenzie (1966, 1967, 1968) came to a
similar conclusion which was also based upon the assumption that the
nonhydrostatic equatorial bulge was a genuine characteristic of the planet
and preferred models for the mantle viscosity profile in which the lower
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mantle value was greater than 10%° Pa sec (10*® P). This argument for
extremely high viscosity in the lower mantle was completely undermined
by Goldreich and Toomre (1969), who pointed out that the crucial non-
hydrostatic equatorial bulge did not in fact exist! It had been inferred from
a spherical harmonic expansion which was improperly biased to the degree-
two harmonic. The question of the magnitude of the viscosity in the deep
mantle remained open.

It was beginning about this time that data from '*C-dated shorelines in
Canada began to become available in sufficient quantity and quality as to
promise a considerable enhancement of depth resolution. Although major
papers containing detailed observations on the rebound of the crust in North
America began appearing in the early 1960s (Loken, 1962; Farrand, 1962;
Washburn and Struiver, 1962; Bloom, 1963), it does not appear that any
detailed efforts at geophysical interpretation were attempted prior to the
paper by Brotchie and Sylvester (1969), who were followed by Walcott
(1970). Brotchie and Sylvester were among the first to consider the isostatic
recovery problem using a spherical model, but their work did not lead them
to any particular interpretation of the mantle viscosity profile, although they
did note that the observed relaxation times in North America were short
(1000-1500 yr) and that they could fit them with their model. Such short
relaxation times were also reported by Andrews (1970), based upon data
from Baffin Island and other sites in the Canadian Arctic, who noted apparent
relaxation times on the order of 2000 yr. The validity of this observation
is also clear from the rather complete set of North American RSL data
compiled by Walcott (1972). If one employs Haskell’s half-space model to
infer a viscosity from this relaxation time, for a deformation of Laurentide
scale, one obtains a value for the viscosity of the mantle which is very nearly
the same as that implied by the Fennoscandia data, i.e., ~10*' Pa sec.
Because of the considerable increase of the horizontal scale of the Laurentide
load over that which existed on Fennoscandia, the isostatic adjustment of
Canada is sensitive to viscosity variations across the seismic discontinuity
at 670 km depth, which marks the boundary between the upper and lower
mantle. Since the viscosity inferred from the two data sets is the same, the
implication is clearly that there is no substantial viscosity contrast across
this boundary. This conclusion was enforced in work by Cathles (1975).
Peltier (1974), and Peltier and Andrews (1976), who employed spherical
viscoelastic models and showed that radiocarbon-controlled RSL data from
the Hudson Bay region and from the eastern seaboard of North America
could not be fit by models which had any extreme contrast in viscosity
between the upper and lower mantle. This result has had considerable in-
fluence on the recent debate concerning the style of the convective circu-
lation in the mantle.

It is a result which has proved to be controversial. however—as contro-
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versial as was the interpretation of the combined uplift data from Fenno-
scandia and Lake Bonneville. The reason for the controversy over inter-
pretation of isostatic adjustment data from North America has concerned
an apparent contradiction between the short relaxation time obtained from
RSL data and the rather large free-air gravity anomaly which is observed
over Hudson Bay, in very close apparent correlation with the topography
of the Laurentide ice sheet at glacial maximum. A discussion of this diffi-
culty first appeared in Walcott (1970), who presented a free-air gravity
anomaly map based upon the work of Innes et al. (1968) which shows a
clear elliptical anomaly trending NW with an amplitude of approximately
—35 mGal. The zero anomaly contour on the map passes through the St.
Lawrence Valley, the Great Lakes. lakes Winnipeg and Athabaska, Great
Bear and Great Slave lakes, and Melville Sound; in other words. virtuallv
coincident with the edge of the ancient Laurentide ice sheet (e.g., Brvson
et al,, 1969). As Walcott (1970) argues and later (Walcott, 1973, 1980)
reiterates. it seems preposterous to suppose, as have O’Connell (1971) and
Cathles (1975), that this gravity anomaly is unrelated to the currently ex-
isting degree of isostatic disequilibrium associated with the melting of Lau-
rentide ice. Yet if one does ascribe the anomaly to deglaciation one is led
to an impasse, since one then estimates an amount of uplift remaining to
be At = Ag/2wGp (where Ag is the observed gravity anomaly, G the grav-
itational constant, and p the density of the material displaced to form the
depression). which gives approximately 250 m. As Walcott correctly argues,
this large remaining uplift is incompatible with exponential relaxation of
the uplift with a time constant as low as 2 X 10? yr. Rather, he asserts that
if the relaxation is purely exponential then the relaxation time must be
“between 10,700 and 17,100™ yr, which he (Walcott, 1970) recognized to
be an order of magnitude greater than that implied by the sea level data.
This is the contradiction which has fueled recent controversy. In his 1970
paper, Walcott suggests an empirical way out of this dilemma by showing
that if the relaxation consisted of a superposition of two exponential decays.
so that the remaining uplift (in meters) obeved an expression like
“h = 150710 4 450715 % 10*¥7 7 then the impasse might be avoided. He
suggests three possible physical effects which might support such behavior:
(1) the presence of a lithosphere. (2) the presence of viscosity stratification
with a low-viscosity “asthenosphere™ overlying a high-viscosity lower man-
tle. or (3) non-Newtonian effects. As we show in Sections 3, 4. and 3 of this
article, Walcott’s empirical idea turns out to be almost correct. but for none
of the physical reasons he suggested! His own currently preferred expla-
nation (Walcott, 1980) is that relaxation times in Hudson Bav are in fact
in excess of 10,000 yr, even though this must be considered extremely
unlikely given the weight of observational evidence to the contrary.
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Virtually all authors who have attempted to infer the viscosity of the deep
mantle from isostatic adjustment data and have come to the conclusion
that the viscosity of the mantle is essentially constant have had to ignore
the free-air gravity data in order to support their claims. Cathes (1975), for
example, argues along with O’Connell (1971) that there is no substantial
deglaciation-related free-air anomaly associated with either the Laurentide
or Fennoscandian depressions. Such correlations as apparently exist are
considered by them to be merely coincidental. O’Connell’s argument for
a low value of the deep mantle viscosity is particularly interesting. He at-
tempted to infer a mean value for mantle viscosity by assuming, following
Dicke (1969), that the cause of the nontidal component of the acceleration
of the earth’s rotation was Pleistocene deglaciation (we prove by direct
calculation in Section 6 that this assumption is correct). His analysis led
him to believe that either one of two possible relaxation times for the degree-
two harmonic would allow him to fit these data, the two relaxation times
being near 2 X 10 and 10° yr, respectively. To determine which of these
times was appropriate, he compared the potential perturbation produced
by the shift in surface load to the earth’s present anomalous gravitational
potential as determined by the satellite data available to him at that time.
Since he found no correlation between these fields, he concluded that com-
pensation must be complete and therefore that the correct relaxation time
was the smaller of the two, so that the mean mantle viscosity was low.
Walcott (1980) accepts O’Connell’s claim of a lack of correlation and pro-
vides an argument (which does not seem reasonable to me) as to why this
result should imply that the longer relaxation time must be preferred. It is
quite clear from more modern satellite data (e.g., Lerch et al., 1979), how-
ever, that there is a very good correlation between the geoid anomaly and
Laurentide ice topography, as clear as that shown by the surface free-
air data.

Several authors have used the apparent inability of Newtonian viscoelastic
earth models to simultaneously satisfy the RSL and free-air gravity data as
a point of departure from which to launch rather extreme theories for the
rheology of the planetary mantle. Jeffreys (1973), for example, has main-
tained his longstanding argument that this difficulty was due to the fact that
the assumption of a steady-state Newtonian viscous rheology for the long-
term behavior of the earth was fundamentally in error. He argues that any
steady-state deformation of mantle material is impossible and as a corollary
to this that thermal convection in the mantle cannot occur. Although some-
what less extreme in their views. Post and Griggs (1973) begin from the
same point and argue (using data from Lliboutry, 1971, on uplift at the
mouth of the Angerman River in Sweden) that the observed relation be-
tween the uplift remaining and the rate of uplift demands that the mantle
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be non-Newtonian in its mode of steady-state deformation. Their conclusion
is based upon the assumption that the present-day free-air anomaly over
Fennoscandia produced by deglaciation is about —30 mGal. The actual
anomaly is closer to —15 mGal according to Balling (1980) (Walcott, 1973,
accepts —17 mGal), and this completely undermines the argument of Post
and Griggs that the Fennoscandian rebound provides direct evidence for
non-Newtonian behavior and for a power law exponent near n = 3. Cathles
(1975), in his arguments in favor of uniform mantle viscosity, is forced to
argue that the free-air anomaly over Fennoscandia associated with degla-
ciation is only —3.5 mGal, which is also, and clearly, incorrect on the basis
of modern analyses of this field. Anderson and Minster (1979), following
a suggestion by Weertman (1978), have adopted a position with respect to
the rebound observations which is also rather difficult to defend. They have
argued that postglacial rebound is in a transient creep regime rather than
the regime of steady-state deformation and so are philosophically close to
Jefreys. Peltier er al. (1980) have provided several arguments as to why this
suggestion is unreasonable. These few citations should suffice to demonstrate
that the apparent inability of Newtonian viscoelastic earth models to fit
both gravity and sea level data simultaneously have caused many geo-
physicists to adopt extreme positions concerning the rheology. In Section
2 of this article we describe a simple linear viscoelastic rheology which
appears capable of reconciling geodynamic phenomena with time scales
which encompass the entire spectrum between those of the elastic gravi-
tational free oscillations and those of mantle convection. The steady-state
behavior of this model is Newtonian viscous, and the transient creep regime
lasts only about 200 yr.

Aside from demonstrating in the following sections of this article the way
in which the modern theory of glacial isostasy is able to simultaneously
reconcile observations of RSL and free-air gravity, we also show that certain
characteristic properties of the earth’s history of rotation are attributable
to Pleistocene deglacial forcing. The existence of such effects is particularly
important since they depend only upon the degree-two harmonic of the
glaciation-induced deformation and therefore provide optimal information
on the viscosity of the deepest mantle. One of these effects is the observed
nontidal component of the acceleration of rotation which is responsible for
the observed nontidal variation of the length of day. Although this cause-
and-effect relation was previously assumed by O'Connell (1971) following
the suggestion of Dicke (1966), we will discuss the recent results of Peltier
and Wu (1982). who calculate this effect directly. The second of the degla-
ciation-related rotation effects discussed here is the observed secular drift
of the rotation pole as recorded astronomically by the International Latitude
Service (ILS) and the International Polar Motion Service (IPMS) over the
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time period 1900-1980. This drift is at a rate near 1°/10° yr toward Hudson
Bay and as pointed out by Sabadini and Peltier (1981) seems also to be due
to deglacial forcing. When these rotation data are combined with the RSL
and free-air gravity information, we are able to constrain the mantle vis-
cosity profile to depths which extend well into the lower mantle.
Although Sections 2-6 of this article deal exclusively with the theory and
phenomenology of glacial isostatic adjustment, Section 7 has been included
to provide one example of an application of the theory of glacial isostasy
to an important problem in paleoclimatology. Recent analyses of the mag-
nitude of the ratio of concentrations of the stable isotopes of oxygen
(*80/'°0) as a function of depth in sedimentary cores taken from the deep
ocean basins have revealed certain remarkable properties of the climatic
oscillations which have characterized the Pleistocene period (Hays et al.,
1976). Although it was initially believed (Emiliani, 1955) that this isotopic
variability was a direct reflection of Pleistocene temperatures, it was sub-
sequently established (Imbrie and Kipp, 1971) that the isotopic ratio for the
most part reflected the variation of Northern Hemisphere ice volume. Hays
et al. (1976) were able to transform the depth scale in some particularly
long cores into a time scale by finding the depth corresponding to the
Matuyama-Brunhes polarity transition of the earth’s magnetic field, which
is marked by certain faunal extinctions. Since the age of this polarity tran-
sition (~700 kyr B.P.) is known from the paleomagnetic time scale estab-
lished on land, their assumption of constant sedimentation rate leads di-
rectly to a depth — time transformation. Power spectral analysis of the
resulting time series revealed remarkable periodicities to be present in the
history of ice volume fluctuations. Statistically significant spectral peaks
were found corresponding to periods near 19,000, 23,000, 41.000, and
100,000 yr. These are all astronomically significant periods, the first two
corresponding to the period of precession of the equinoxes, the next to the
period of changes in orbital obliquity, and the last to the period on which
changes occur in the eccentricity of the earth’s orbit around the sun. Hays
et al. (1976) of course interpreted their results in terms of Milankovitch
(e.g., Imbrie and Imbrie, 1978) theory of paleoclimatic change, which at-
tributed all major fluctuations in climate to variations in the insolation
received by the earth due to precisely these changes in the orbital parameters.
An embarrassing difficulty with this interpretation. however, is that there
is no significant variation of insolation predicted on the period of 10° yr.
yet it is at this period that well over 50% of the spectral variance in the ice
cover record is found. In Section 7 we analyze a paleoclimatic model pro-
posed by Weertman (1961, 1976) and more recently elaborated by Birchfield
(1977) and Birchfield et al. (1981) which essentially involves coupling of
a model of ice-sheet flow with a model of glacial isostatic adjustment. These
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authors analyze the time variation of ice volume which would be produced
by solar forcing of this nonlinear model and find that although there is a
diffuse peak at 10° yr in the fluctuation time series it is overwhelmed by
peaks at the forcing periods associated with orbital precession and obliquity.
As we will show, however, the model of isostatic adjustment those authors
employ is completely inadequate to describe this physical process. When
results from the modern theory of glacial isostatic adjustment are used to
redesign this model, we find that it does support a free relaxation oscillation
at the observed period.

The process of glacial isostatic adjustment described in the main body
of this article is therefore one which has rather wide-ranging importance in
many fields of earth science. Indeed, the basic rudiments of the theory which
has been developed to understand this collection of related phenomena
(contained in Peltier, 1974, and later articles) has found application in the
study of such diverse geophysical phenomena as the formation of sedi-
mentary basins (Beaumont, 1978) and the relaxation of impact craters on
Mars (Philips and Lambeck, 1980). It also contains within it, in a particular
limit, a complete spherical viscoelastic description of the problem of lith-
ospheric flexure which has proved useful in describing a number of other
important geophysical observations (see the review by Turcotte, 1979). It
is hoped that the following elaboration of these ideas may suggest further
avenues of application.

2. MANTLE RHEOLOGY: A UNIFORMLY VALID LINEAR
VISCOELASTIC MODEL

Perhaps the most important ingredient in the theory of glacial isostasy
is the model which is employed for the rheology of the mantle. In a sense,
all of the physical predictions of the theory follow immediately once the
rheology is specified—given that some care is taken in solving the mathe-
matical problem posed by the classical conservation laws. Since the question
of the precise nature of the rheological law which governs the response of
mantle material to an applied shear stress remains one of the most contro-
versial in geodynamics, it is perhaps not inappropriate that we should begin
by defending the particular form of the rheological law which will be em-
ploved in our subsequent analysis of glacial isostatic adjustment.

Although it is well known that for short time scale seismic processes the
earth behaves essentially like a Hookean elastic solid, even on these time
scales this rheological model is inadequate in many important respects. It
does not, for example, predict the observed spatial attenuation of propa-
gating surface waves, nor does it predict the observed finite quality factors



DYNAMICS OF THE ICE AGE EARTH 13

(Q’s) of the elastic gravitational free oscillations. In recent years there has
developed a consensus among seismologists that it is possible to describe
all of these and some other consequences of the departure of the mantle
from perfect Hookean elasticity using the /inear relations between stress and
strain, which are those appropriate for anelastic materials. Several similar
relations have been proposed, including the modified Lomnitz law preferred
by Jeffreys (1972, 1973) and the very closely related absorption band models
adopted by Liu et al. (1976) and Minster and Anderson (1980a.b). Since
anelastic materials (Nowick and Berry, 1972) predict finite strain in response
to an applied shear stress which is maintained for an infinite length of time,
they cannot support continuous flow such as that associated with thermal
convection.

In order to support flow, the behavior of mantle material must become
viscous in the long-time limit. As mentioned in the last section, early work
on the problem of postglacial rebound was all predicated upon the as-
sumption that the earth’s mantle could be described as a Newtonian viscous
fluid, and elastic effects due to loading were neglected entirely. This as-
* sumption may introduce substantial error, but to correct it we are forced
to design a rheological model for mantle material which is uniformly valid
in time. Its initial behavior must be that of an anelastic solid, while its final
behavior must be that of a viscous fluid. Although the fact that mantle
material does support a steady-state viscous mode of deformation has been
very well established experimentally (e.g., Kohlstedt and Goetze, 1974;
Durham and Goetze, 1977), the data from these high-temperature creep
experiments suggest a nonlinear relation between stress and strain rate and
therefore a non-Newtonian behavior in the steady-state viscous regime.

This question of the linearity or nonlinearity of the rheological law in
steady-state creep is the most outstanding issue which remains to be settled
concerning mantle rheology. The experimental studies cited above cannot
be considered definitive for two reasons. The first of these concerns the fact
that most of the experiments have been conducted on single crystals of
olivine, whereas the mantle is polvcrystalline. The second reason is that the
experiments must be performed at stress levels and strain rates which are
orders of magnitude different from those which obtain in postglacial re-
bound or in convection (strain rates of 107® sec™! are typical of the exper-
iments, whereas 107'® sec™" are typical natural strain rates). It could very
well be that at natural stress levels near 10 Pa the rheological law governing
steady-state creep could become linear as grain boundary processes become
increasingly important. Recent studies by Twiss (1976), Berckhemer et al.
(1979), Greenwood et al. (1980). and Breathau et al. (1979) are all suggestive
of this possibility.

Given the plausibility that the rheological behavior of the mantle could
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FiG. 1. Characteristic time scales of various geodynamic processes compared to the Maxwell
time of the earth’s mantle. Phenomena with characteristic times shorter than the Maxwell time
should be governed by anelasticity. whereas those with longer characteristic time should be
governed by steady-state viscous deformation.

very well be linear across the entire geodynamic spectrum, which includes
the range of phenomenological time scales illustrated in Fig. 1, it is not at
all unreasonable to inquire as to the form which a complete rheological law
would then take. The development of this idea, which will be presented
here, follows that in Peltier ez al. (1981) and Yuen and Peltier (1982). Peltier
et al. (1981) have argued that the simplest rheological law which is capable
of describing the required transition from shori-term anelastic to long-term
viscous behavior is a model which they have called the generalized Burgers
body. As is shown in what follows, this model behaves essentially as a
Maxwell solid insofar as postglacial rebound is concerned if the parameters
which determine the short time scale anelasticity are fixed by fitting the
model to the observed Q’s of the elastic gravitational free oscillations. We
can consider the process of fitting the observations of glacial isostasy with
this model as a basic consistency test of the model assumptions. If the model
can be fitted to the data then we may conclude that the data contain no
characteristics which demand a non-Newtonian rheology to explain them.
This would not. of course. imply that the mantle was Newtonian, although
it would provide strong circumstantial evidence of the possibility. Much
more work on the isostatic recovery of non-Newtonian models of the sort
begun by Brennan (1974) and Crough (1977) will have to be done if we
are to understand the diagnostic characteristics of such physical behavior
properly.

2.1. The Generalized Burgers Body

In Fig. 2 we show a sequence of standard spring and dashpot analogs to
several common linear viscoelastic rheologies. The analog shown in Fig. 2¢
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is the simplest linear model which exhibits the transition from short-term
anelastic to long-term viscous behavior, which is characteristic of the plan-
etary mantle. It consists essentially of the superposition of the Maxwell
model shown in Fig. 2a and the standard linear solid shown in Fig. 2b. A
three-dimensional tensor form of the rheological constitutive relation for
the Burgers body solid has been derived in Peltier er al. (1981) and has the

form
+ 2 - 1 » 2 l
oy + (u + &)(% ~ 3 Ok 51«') + B2 (D'u — T Ok 5kf)

L) Va R 3

= 2p1 €y + Ni€jy Oy + gujl:ﬂ (é’m = % ik 5&-.:) (2.1)
in which ¢, and ey are the stress and strain tensors. dots denote time
differentiation, g, and X, are the unrelaxed (elastic) Lamé parameters, and
K> 1s the shear modulus associated with the Kelvin—Voight element (parallel
combination of spring and dashpot). For this model the elastic defect is

. A = u,/u>. The two viscosities v, and v, are respectively the long and short
time scale parameters which together control the range of time scales on
which anelastic and viscous processes dominate (see Fig. 1).

Constitutive relations for the simpler Maxwell and standard linear sol-
ids may be derived from the Burgers body expression (2.1). In the limit
v» — oo Eq. (2.1) becomes

T+ (/v 0 — 500k Or)) = 20,8 + Ny By

which mayv be integrated once in time to give the Maxwell constitutive
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F1G. 2. Spring and dashpot analogs of several common linear viscoelastic rheologies. (a)

Maxwell solid. (b) standard linear solid. (c) Burgers body solid. (d) the “‘generalized™ Burgers
body,



16 RICHARD PELTIER

relation
G+ (/v ok — 3% O) = 26 + N Sy (2.2)
which was introduced by Peltier (1974) in developing the linear viscoelas-
tic theory of glacial isostasy. If in Eq. (2.1) we take the opposite limit
v, — oc, then we obtain
G+ [y + w2)/va)(oks = 304k Bk)
= 2u8y + M@ Sy + Quipa/va)(y — 56 61)
which can also be integrated once in time to yield the rheological constitutive
relation for the standard linear solid (SLS) as
aw + (w1 + p2)/wal(ow — 50k )
= 26 + Méu B + (Quipea/va)ew — 56k Ox0) (2.3)
In the domain of the Laplace transform variable s, each of the linear
viscoelastic constitutive relations (2.1)-(2.3) may be written in Hookean
elastic form by direct Laplace transformation to give
ou = 2u(S)e + AS)ew: du (2.4)
in which the moduli g(s) and A(s) are functions of the Laplace transform
variable. Explicit forms of these moduli for the four cases are as follows:
(1) Hookean elastic solid

uis) = AS) = Ny (2.5a)
(2) Maxwell solid
. h +
Wy =—25 g =Mt ER (2.5b)
S+ /v 5+ /vy

(3) Standard linear solid

_ Pl(S + F:f”z)
5+ (g + p2)fv2 (2.5¢)
Nis + {[(y + pa)/wa)(Ny + 2m0) = Moapalva)}

S+ (g + wa)/va

ul(s)

A(s) =

(4) Burgers body solid

uls) = HyS [ (s — w/wa)(s + wi/vy) ]
TS wy/ey LS+ pafvad(s + o /vy) s/
+ pa 1 2 2 s lLe T 3
- [(LJ‘_ 2 -“_-)(7\[ i :m) _ _LA]S L Bk (,\i L2 m)
vy Iy ] 3 Vs Vs 3
As) =

: =
3_+(m_ﬁt_z+&)s+w
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(2.5d)
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It is important to note that all of these constitutive relations have been
designed under the constraint that they have zero bulk dissipation, which
is to say that the bulk modulus K = A(s) + 3u(s) is independent of s for
every model. Dissipation is therefore realized only in shear and not in
compression.

In spite of the fact that the Burgers body described through constitutive
relation (2.1) displays the transition from initial anelastic to final viscous
behavior which is required to understand the general behavior of the mantle,
it is nevertheless incapable of fitting the full set of relevant observational
data. The problem has to do with the single Debye peak representation of
the anelastic behavior embodied in this model. As we will show through
examples discussed below, when the simple Burgers body is employed to
fit observations of the Q’s of the elastic gravitational free oscillations, it is
found to be incapable of delivering the weak dependence of Q upon fre-
quency which is characteristic of the observations. In order to generate a
viscoelastic model which does not suffer this deficiency, we are forced to
consider constitutive relations which are not expressible in a simple differ-
ential form like Eq. (2.1). Generalized models such as are required to un-
derstand the short time scale viscoelastic structure of the earth require the
superposition of a large number of distinct relaxation peaks. which are
represented schematically by the chain of Kelvin-Voight elements in the
analog shown in Fig. 2d. The necessity of using such models to describe
the mantle makes this region of the earth very much like an amorphous
polymer (Nowick and Berry, 1972) insofar as its rheology is concerned.

As the number of Kelvin-Voight elements in the chain approaches in-
finity, it becomes advantageous to describe the resulting constitutive relation
in terms of the notion of a continuous relaxation spectrum (Gross, 1947,
Zener, 1948; MacDonald, 1961; Liu et al., 1976). This in turn necessitates
use of the integral representation of the stress—strain relation which follows
from the Boltzmann superposition principle. The most general form of such
a relation is

o) = || ot = Métr) dr 2.6)

where C, is a fourth-order tensor function for stress relaxation (Christen-
sen, 1971) and the convolution integral over 7 is to be regarded as a Stieltjes
integral. For an isotropic material. Eq. (2.6) reduces to

o) = &y J: Mt — n)edr) dr + 2 f_ u(t — 7)é(r) dr 2.7

in which X and u are the two stress relaxation functions required to describe
an isotropic linear viscoelastic solid. Assuming that the viscoelasticity of the
mantle is felt only in shear and not in compression. then Eq. (2.7) becomes
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a0 [ [k-3u-0|%ar2 [ w-0®s o)

where K = \ + 3 is the elastic bulk modulus as before.

If we first restrict our attention to the short time scale anelastic component
of the rheology, it is useful to introduce the idea of a normalized relaxation
function in describing the single parameter u(z) which is needed in the
integral constitutive relation (2.8). We define

r(l) = urAd(2) (2.9)

with pr the relaxed modulus of our generalized standard linear solid.
A = (u; — pr)/pr the modulus defect of this solid, and ¢(¢) the normalized
relaxation function. Following standard work on linear viscoelasticity
(Gross, 1953; Christensen, 1971), we may further relate ¢ to the relaxation
spectrum R through the integral transform

(1) = J:m R(r)e ™ d(In 7,) (2.10)

In his recent work on transient wave propagation in an absorption band
solid, Minster (1978) employed a relaxation spectrum which was parabolic
in shape as

R(r) = (B/r)H(r. — T)H(T; — 7,) (2.11)

with 7, the relaxation time at constant strain, B a normalization constant,
and H the Heaviside step function. Substitution of Eq. (2.11) into Eq. (2.10)
and Eq. (2.10) into Eq. (2.9) followed by direct Laplace transformation of
u(r) gives the analytic expression for the transformed shear modulus as

2 s+ l;TE:I

u(s) = #u[l a1y

7Q, s+ /T, Gl

From Eq. (2.8) it is then quite clear that the Laplace transform domain
form of the constitutive relation is just

8;i(8) = 2u(s)e; + [K — ju(s)]ew 6, (2.13)

which thus has the same Hookean elastic form as Eq. (2.4). which was
obtained from the differential constitutive relations.

Now expression (2.12) has been found to provide a reasonably accurate
description of the high-frequency anelastic behavior of the mantle and is
also a form which has been commonly applied in similar analysis of poly-
mers (Ferry, 1980). Using Minster’s geophysically reasonable values for the
model parameters (Q,, = 250, T, = 1072 sec, and 7> = 10* sec), we may
estimate the elastic defect A = (u; — pgr)/ur to be
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so that the difference between the relaxed and unrelaxed shear modulus is
only 3%. Even though Eq. (2.12) provides a good phenomenological de-
scription of high-frequency processes, however, it is incapable of supporting
thermal convection as it does not possess long-term viscous behavior.

In order to design a model which has both the correct long time scale
and the correct short time scale behavior, we can appeal to the expression
for the transformed shear modulus of the simple Burgers body given in Eq.
(2.5d). Clearly, if we replace the expression in square brackets in the first
equation of (2.5d) by the expression in square brackets in Eq. (2.12) we will
obtain an expression for the transformed shear modulus which is uniformly
valid in time. This is

S 2 s+ l}(Tz]
= 1+ 1 2.15
n(S) s+ ,U-[/V| [ 1'l'Qm - § + l/,:rl ( )
For u,/v, <€ s € 1/T5, Eq. (2.15) becomes
ws l: 2 Tz] HRS
5) = I = In—=|=——"— 2.16
KS) s+ /vy 70, T, s+ /v ( )

which is the expression for the transformed shear modulus of a Maxwell
solid, so that in the low-frequency limit the generalized Burgers body de-
scribed by Eq. (2.15) will behave like a Newtonian viscous fluid. In the high-
frequency limit s = 1/75, it will behave as a simple absorption band.

In the following two subsections we will provide simple illustrations of
the ability of the rheological model (2.15) to fit both high- and low-frequency
geophysical data.

2.2. Free Oscillations of a Homogeneous Spherical Burgers Body

Our intention in this subsection is to demonstrate the way in which free
oscillations data may be employed to constrain the parameters Q,,, 73, and
T, which are required to specify the absorption band part of the generalized
Burgers body rheology Eq. (2.15). We will restrict this discussion to con-
sideration of a homogeneous, spherical, nonrotating, viscoelastic, and 1so-
tropic continuum which is perturbed from its hydrostatic equilibrium con-
figuration by oscillations of infinitesimal amplitude. Such self-gravitating
oscillations satisfy the following linearized equations of momentum balance
and gravitation (see Gilbert, 1980, for a recent discussion):

V.o — V(pgu-é) — pVe + gV-pué, = —ps’u 2.17
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V¢ = —47GV - pu (2.18)

The scalar fields p(r) and g(r) are the density and gravitational acceleration
in the hydrostatic rest state, respectively; & is the stress tensor, ¢ the asso-
ciated perturbation of the gravitational potential, u the displacement vector,
G the gravitational constant, and é, an outward-pointing radial unit vector.
The stress tensor in Eq. (2.17) is given by Eq. (2.13) with u(s) specified by
Eq. (2.15). In general the Laplace transform variable s is complex, so that
u(s) is complex also. In attacking the viscoelastic free oscillations problem
in this fashion we are employing the so-called correspondence principle and
in so doing following the same approach employed by Peltier (1974) in
analysis of the isostatic adjustment problem. The method has very wide
applicability.

We lose no important generality by seeking solutions to Egs. (2.17) and
(2.18) in the form

g aP oP .
u=Z[Mmﬂ&&%®é+HUﬁhﬁ@m®&+Hﬂnﬂgj&m®%]

1=0
(2.19a)
$=3 bl SP(CED) (2.19b)
=0

in which ¢, and é, are unit vectors in the § and ¢ directions, respectively,
and P, is the Legendre polynomial of degree / and order zero. Substitution
of Eq. (2.19) into Egs. (2.17) and (2.18), assuming that the physical prop-
erties of the earth model p, u. and K are constant, reduces the field equations
to two decoupled sets of first-order ordinary differential equations of the
form

dX/dr = BX (2.20a)

dY/dr = AY (2.20b)

in which X = (W3, T,)", Y = (U, V). Ty, Ty, é1, Q)7 and A and B are
reduced forms of the 2 X 2 and 6 X 6 matrices of coupling coefficients given
by Gilbert (1980). The r- and s-dependent coefficients 7},. T, and T ; are
those which appear in the spherical harmonic expansions of the a,,, ¢,,. and
7,, components of the stress tensor. and the Q; are those which appear in
the expansion of the auxiliary variable ¢ = d¢/dr + (I + 1)¢/r + 4xGlu,.
The differential systems (2.20a,b) respectively govern the toroidal and sphe-
roidal free oscillations. With / = 0 the spheroidal system describes the radial
modes of free oscillation for which ¥ = Ty = 0 so that (¢, Q) decouple
from L. Ty and Eq. (2.20b) reduces to the second-order system

dZ/dr=CZ (2.20c¢)

where Z = (U,, T,,)" and n is used to label the radial eigenstates.
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Complex eigenvalues s = s, + is; for the homogeneous systems (2.20) are
determined from simultaneous zero crossings of the real and imaginary
parts of the secular functions D;(s, /) associated with each set of equations.
The secular functions are themselves determined by the boundary condi-
tions at the earth’s surface. From Takeuchi and Saito (1972), the secular
function for the toroidal system (2.20a) is

Dy(s, 1) = (I = 1)ji(k, a) = kaji.\(k, @) (2.21)

where &k, = [po/u(s)]'? a is the earth’s radius, and p, is the average earth
density. For the spheroidal system (2.20a) the characteristic equation is of
the form

T T8 Ty
Dis,)=detl T} TP TS (2.22)
o' o o

where the superscripts 1, 2, and 3 denote the three linearly independent
solutions regular at the origin, each of which consists of a combination of
two spherical Bessel functions jj(z) with different complex arguments z and
a polynomial in r of degree /. Explicit expressions will also be found in
Takeuchi and Saito (1972). The secular function for the radial system is
also given in this reference as

Die )= tan k.a _ kaa
e uis)  u(s) — iING) + 2u(s)]k e
where (2.23)
16GTG)po — s°7'12
kals) = [p " NG + 2u(5) ]

Complex eigenspectra for the homogeneous earth model with properties
listed in Table I have been calculated by Yuen and Peltier (1982) using the
numerical methods developed for hydrodvnamic stability analyvsis by Davis
and Peltier (1976, 1977, 1979). We will discuss a small subset of their results
in order to illustrate the points which most concern us here. Figure 3 shows
free oscillation frequency 5; = » as a function of angular degree / and
overtone number #n for the radial modes, spheroidal modes. and toroidal
modes of a homogeneous model with either the simple Burgers body rheol-
ogy, which has u(s) given by Eq. (2.5d). or the generalized Burgers body
rheology. which has u(s) given by Eq. (2.15). The parameter », is fixed as
v; = 10*' Pa sec in both models. For the simple Burgers body, the short
time scale viscosity v» has been fixed by the requirement that the frequency
of ¢S, does not deviate substantially from the elastic frequency and that the
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TABLE 1. PHYSICAL PROPERTIES OF THE HOMOGENEOUS MODEL

Property Svmbol Average value Units
Density Po 5517 kg/m?*
s-Wave velocity v, 5130 m/sec
p-Wave velocity ¥, 10798 m/sec
Shear modulus u 1.4519 x 10" N/m?
Comp. modulus by 3.5288 x 10" N/m?
Surface gravity & 9.82 m/sec?
Radius a 6.371 x 10° m

Q of ¢S., where Q = 5,/2s,, is equal to 200. This requires that », ~ 10'° Pa
sec (10" P); u, is chosen such as to make A = 0.03. The parameters of the
prototvpe absorption band have been fixed at Q,, = 250, T, = 107 sec,
and 7> = 10? sec. With such low intrinsic dissipation, the free oscillation
frequencies are not significantly affected by the deviation from perfect Hook-
ean elasticity, as is well known. The necessity of choosing v, ~ 10'® Pa sec
in order to fit observed modal Q’s (which are on the order of a few hundred;
Anderson and Hart, 1978; Buland et al., 1979; Sailor and Dziewonski, 1978)
explains the value for this parameter which is marked on Fig. 1. In the case
of absorption band anelasticity we can think of a continuous spectrum of
short-term viscosities centered on this characteristic value.

Although the simple and generalized Burgers bodies are not distinguish-
able from one another through their predictions of free oscillation frequency,
they are strikingly different in their predictions of modal Q. Figure 4 shows
Q = s,/2s; for a selection of radial, spheroidal, and toroidal modes for each
of these models. The simple Burgers body with », = 10'® Pa sec predicts
rapidly increasing @ with increasing modal frequency, whereas the absorp-
tion band model eliminates this extreme variation. Since observations of
free oscillation Qs for the real earth cited above show no extreme variations
of modal Q to exist, the single Debye peak of the simple Burgers body is
not a valid description of mantle anelasticity and the generalized Burgers
body must be employed. The predicted variations of Q with angular order
and overtone number for this model shown in Fig. 4 are remarkably like
those which have been observed for the stratified real earth. We note the
sharp drop in Q along the radial-mode sequence from the fundamental
mode to the first overtone. which is also characteristic of the observations
(Buland et al., 1979). We note also the local Q maxima along the spheroidal-
mode overtone sequences. which are due to the relative partitioning of
energy in the modes between shear and compression. This is also char-
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FI1G. 3. Free oscillation frequency as a function of angular degree [ and overtone number

n for a sequence of (a) radial (,Sp). (b) spheroidal (,.S;), and (c) toroidal (,7) modes for a
homogeneous spherical Burgers body model of the earth.
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acteristic of the observations (Anderson and Hart, 1978). The interested
reader will find a more detailed discussion of these calculations in Yuen
and Peltier (1982).

For our present purposes the above abbreviated discussion suffices to
establish that an absorption band description of the anelasticity of the man-
tle seems to be required to explain observations of free oscillation Q. Because
of the magnitude of the long time scale viscosity v, in the generalized Burgers
body, it produces no influence upon the attenuation of high-frequency seis-
mic oscillations. This is demonstrated in Table 11, where we show a sequence
of calculations comparing the Q’s and periods of the mode S, for the
absorption band model, with u(s) defined in Eq. (2.12), with those for the
generalized Burgers body, with u(s) given by Eq. (2.15) as a function of the
long time scale viscosity »,. Not unless », is less than 10" Pa sec is the
influence of its presence significant. Seismology is oblivious of the fact that
the eventual behavior of the mantle is viscous.

As discussed in Peltier er al. (1981) and Yuen and Peltier (1982), the
generalized Burgers body supports not only the weakly damped oscillatory
" modes of the free oscillation family, but also two families of quasi-static
modes which lie on the negative real axis of the complex s plane. They are
normal modes of viscous gravitational relaxation and exhibit exponentially
decaying rather than oscillatory behavior in time. In Fig. 5 we show two
schematic diagrams of the complex s plane, one for the simple and one for
the generalized Burgers body. Both plots show the spheroidal modes of
degree [ = 2 for the prototype rheologies and include all of the free oscil-
lations up to overtone number 7 = 5. The arrows show the displacement
of the free oscillation eigenvalues off the imaginary s axis due to finite
anelasticity. For the simple Burgers body (Fig. 5a), there are two additional
modes on the negative real s axis. The first has a decay time of 15.94 hr
and is supported by the anelastic component of the rheology, whereas the
second has a decay time of approximately 10* yr and is supported by the
viscous component. The first of these modes is marked by a solid circle and
the latter by a cross near the origin s = 0. Because of the magnitude of their
relaxation times, inertial forces play no role in the dynamics of these modes,
and I therefore refer to them as quasi-static. The complex s plane for the
generalized Burgers body (Fig. 5b) differs from that for the simple model
only with respect to the nature of the short time scale quasi-static mode.
For this generalized model, no such distinct mode exists, but rather there
is a continuum of them ranging in relaxation time from the short time scale
cutoff of the absorption band T, to the long time scale cutoff T>. This is
illustrated in Fig. 5b by the branch cut connecting the points s, = —1/T,
and s, = —1/T>. The quasi-static mode associated with the viscous response
is imperceptibly shifted from its location for the simple Burgers body. All
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TABLE II. COMPARISON OF PERIOD AND {J OF THE MODE (S; FOR THE GENERALIZED
BURGERS BoDY RHEOLOGY (rg, Op) WITH THOSE FOR THE
ABSORPTION BAND RHEOLOGY (7¢, ()

v; (Pa sec) (On = Oo)/ Qo (%) (8 — 7o)/70 (%)
10? -6 x 107 1 X103
10%° -1 x 1073 3x 1078
10" -2 x 1073 7 % 1073
10® -8 x 107? 4x 10
10"7 -3 x 107! 6 x 1073
10'¢ —4 % 10 2x 107!

of the quasi-static modes are viscous gravitational in nature and are sup-
ported by the density contrast across the free outer surface of the model.
As we will see in the detailed discussion of the quasi-static viscous modes
provided in Section 3, additional density discontinuities which exist in the
radial structure of realistic earth models lead to the appearance of additional
quasi-static modes. This turns out to have extremely important physical
consequences in the theory of glacial isostasy, which is formulated in terms
of the quasi-static viscous modes, and in fact explains the ability of our
theory of this phenomenon to explain RSL and free-air gravity data si-
multaneously,

The discrete quasi-static modes supported by the anelasticity of the simple
Burgers body and the continuum present in the generalized model have yet
to be exploited in the understanding of geodynamic phenomena. It is in
terms of these modes that the explanation of the phenomenon of postseismic
rebound might be found. for example, though they have yet to be employed
in this context. Much of the recent literature on this problem may err
seriously, in my view, by attempting to describe the observed relaxation of
the surface above the slip zone in terms of models which have Maxwell
rheology below the lithosphere (Rundle and Jackson, 1977; Thatcher and
Rundle, 1979; Cohen, 1980a,b). These models seem to require much lower
values for the long time scale viscosity than those required to fit glacial
rebound data. However. when SLS rheology is assumed to invert the post-
seismic uplift data, values of the short time scale viscosity »» which are about
10'® Pa sec appear to be required (Yamashita, 1979; Nur and Mavko, 1974).
This accords with the value required to fit seismic Q and that which fits the
observed Q of the Chandler wobble (Scheidegger, 1957; Smith and Dahlen,
1981). As illustrated in Fig. 1, all geodynamic phenomena with time scales
less than the Maxwell time of the mantle (~200 yr) should see only the
anelastic component of the rheology. It is important to keep in mind that
the short time scale and long time scale viscosities », and », are actual
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material properties of the planet and not merely “factors” which appear in
equally convenient Maxwell and SLS rheologies, which both predict ex-
ponential relaxation of harmonic loads. Although it is possible to fit postseis-
mic rebound data with a Maxwell model by choosing an appropriate low
value of the viscosity, this does not mean that this phenomenon is actually
controlled by steady-state creep.
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FI1G. 5. Complex s plane for spheroidal modes ,.S- for both the simple (a) and generalized
(b) Burgers body rheologies. The earth model is homogeneous and the solid circles denote
complex normal-mode frequencies supported by the anelastic component of the rheology. The
crosses near the origin denote the imaginary frequency of the normal mode of viscous grav-
Hational relaxation supported by the steady-state viscous component of the rheology.
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2.3. Viscous Gravitational Relaxation of a Homogeneous,
Incompressible, and Spherical Burgers Body

Because the eventual behavior of the generalized Burgers body is both
viscous and incompressible, we may approximately determine the nature
of the quasi-static viscous part of the complete normal mode spectrum of
the earth model by neglecting compressibility at the outset. For such a
model, the constitutive relation which replaces Eq. (2.13) is

O','),' == 5,_",- + 2,‘16’”‘ (2,24)

Making use of the fact that V- u = 0, the stress tensor can be shown to have
divergence
Vie=Vr—uVXVXu (2.25)

when the shear modulus p is independent of spatial position. Since s is
small for the quasi-static viscous modes (see Fig. 5), we may neglect the
inertial force on the right-hand side of Eq. (2.17) and rewrite it, using
d,00 = 0 and V-u = 0. in the form

—V(pod1 + pogou-e, — ) — pV X w =0 (2.26)
where w = V X u. The divergence of Eq. (2.26) is
(po/w)V (¢, + gou-e, — w/pg) = 0 (2.27)

In the incompressible limit when the density is constant, Eq. (2.18) also
reduces to the form
Vi, =0 (2.28)

Spheroidal solutions to the system (2.27, 2.28) can be constructed by ex-
panding u and ¢ as in Eq. (2.19) and 7 and w as

== 2 m(r, S)Pi(cos 6) (2.29a)
=0
w =2 Hy(r, 5) 3P, (cos 0)é, (2.29b)

T
©

where H, = I+ V)/r — U)/r. Substitution in Egs. (2.27) and (2.28) reduces
them to

AP, + ErU — mfpo) = 0 (2.30)
e =0 (2.31)

where V;i(r?U) = (d-Uydr?) + 2/r)(dUydr) — Kl + 1)(U)/r?). The radial
component of Eq. (2.26) is also required and is
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d;—rr(’i) — I+ DU, = 3#‘—’ r? g; (rb; + 85U — i] (2.32)
Now the solutions to Egs. (2.30) and (2.31) are
&, = Cyr! (2.33)
®; + £rU; — (mi/po) = (1/po)Cyr! (2.34)
Substitution of Eq. (2.34) into Eq. (2.32) then gives
U, = [Cl2(21 + 3)]r* + Cor™? (2.35)

Given ®,. L, and =, from Egs. (2.33)-(2.35) in terms of the three unknown
constants C,. C,, C; we may compute the tangential displacement ampli-
tudes 1/, the normal stress amplitudes 7,, = m; + 2uU,;, the tangential
stress amplitudes Ty = w(V; — Vy/r + U)/r) and the amplitudes Q;, = @, +
(! + D)®/r + 4x0pyU, of the auxiliary variable Q related to the radial
derivative of the potential. In terms of a solution 6-vector Y = (U, V}, Ty,
Ty, ®,. Q) the complete solution may then be represented as
3

Y=2 Cw (2.36)
=1
where
o ( [ri*! (/4 3)yr’! polr™2 + 2uri(i? — I + 3)
S\ +3)" 2@l + a3+ 1) 2021 + 3) ’
2ul(l + 2)r! 3elr ! )T
220+ )0+ 1) 220+ 3) (2:37a)
y2 = ("' rUL por! + 2u(l = 1),
2u(l = D=L 0, 3&r'y (2.37b)
vs =0, 0, pr’, 0, #% Q1+ DrFhy (2.37¢)

The quasi-static spectrum for the incompressible homogeneous model
may now be determined by applying homogeneous boundary conditions
at the outer surface of the model. We insist that the tangential stress and
the normal stress vanish and that the gradient of the potential perturbation
be continuous, which give the boundary conditions

T (a)=20 Tyla)=0 Qiay=0 (2.38)

Application of these conditions at r = a leads to three simultaneous ho-
mogeneous algebraic equations for the C; in the form

MC=0 (2.39a)
where the matrix M is
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[i + fr12 _ ]
poblad™®? + 2uad(1* = 1+ 3) potd + 2u(l — 1)a"2 oo’
2021 + 3)
N 2ul(l + 2)d 2u(l — 1)a'? 0
- 2021 + 3)(I + 1) 1
i+1

L 2#32’5;1 = 3a (2 + Da"!

(2.39b)

For a nontrivial solution we clearly require that the secular condition
det M = 0 be satisfied. Since

2u(s)({ — D21+ 1)a*!
I+ )21+ 3)

detM = [potl + p(s)(2(% + 41 + 3)]  (2.40)

the eigenvalues of the homogeneous problem are either solutions of
u(s) = —polta®/(21% + 41 + 3) (2.41)

or are the values of s which make p(s) = 0. Using u(s) for the homogeneous
Burgers body given by Eq. (2.15), the nonzero eigenvalues are obviously
solutions of

Hi S [l + 2 A I_/’Tz] - pm’Eﬂ"

s+ /v, 70, T2+ 4l +3) (242]

7Om s+ T,
Since the Maxwell time 7%, = »,/y, is such that T}, > T,(T>) there will be
a simple root

i (p, 21 +4/+3 v,)_l
sl=|Zy ——m——+ =2

2.43
My I polgoa Ky ( )

on the negative real axis of the complex s plane (where g, is the relaxed
elastic modulus). Since the modulus defect is small, u./u, =~ 1, and s’ may
be approximated as

! 2{2 + 4[ + 3 "y -1
S=Eilyy——— (2.44)
Polgea M
A fundamental property of the earth is that
212 + 41+ 3
Y t=n t———=s =T, (2.45)

polgoa Hy

for sufficiently large /. Since the factor on the lefi-hand side of the inequality
(2.45) is just the relaxation time for a homogeneous Newtonian viscous
sphere (Peltier, 1974), we therefore see that the reason why the earth may
be approximated as a Newtonian viscous fluid for the purpose of analyzing
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TABLE III. COMPARISON OF 5~/ AND 5% FOR VARIOUS VALUES OF /
AND A HOMOGENEOUS EARTH

Percentage
I} s gV difference
2 -0.9165 —1.1458 25
4 -0.7196 -0.8537 18
6 —-0.5766 -0.6597 14
8 —-0.4784 -0.5342 10
10 —0.4080 —-0.4479 10
50 -0.1023 —0.1046 2
100 -0.0527 —0.0534 1
500 -0.0108 —-0.0108 <0.1

the rate at which surface deformations relax under the gravitational force
is due to the small value of the nondimensional parameter

Polgoa

b= Bl +4+73]

(2.46)
which clearly does not involve the viscosity.In Table III we compare(s')”
with (s¥)™" for various values of / and a homogeneous earth with p, = 5517
kg/m?, a = 6.371 km, g = 9.82 m sec™?, u; = 1.4519 X 10'' N/m?2. In-
spection of this table shows that the elastic correction to the viscous decay
time is at most 25% and obtains for the smallest value of / shown. For
[ = 10 the difference is reduced to 10%. These results show that although
elastic-viscous coupling contributes significantly in determination of the
rate of decay of harmonic surface irregularities, the viscous approximation
is nevertheless not an unreasonable one insofar as the computation of decay
times is concerned.

We will conclude this subsection by demonstrating the way in which Eq.
(2.44) may be employed to estimate the steady-state viscosity of the plan-
etary mantle. Figure 6 shows a photograph of a flight of raised beaches
located in the Richmond Gulf of Hudson Bay near the center of the Lau-
rentide rebound. The relict beaches remain very well exposed at this site,
as they do throughout much of the Canadian Arctic and sub-Arctic. For
this reason they are in many ways much easier to collect data from than
is found to be the case in Europe, where much of the region of uplift is
quite heavily populated. Figure 7 shows the RSL data for this site, with the
individual data points shown as crosses and dots and with the height of
each beach in the sequence plotted as a function of its age in sidereal years
(corrected '“C dates). The solid curve on this figure is the prediction of a
model which will be discussed later. In Fig. 8 the data are replotted on a
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FIG. 6. Flight of raised beaches located in the Richmond Gulf of Hudson Bay.

log-linear diagram on which they would appear as a straight line if the
relaxation were perfectly exponential, The solid line on this figure is the
best-fit straight line to the data for the last 5000 yr, during which time we
can be fairly sure that the vertical motion was essentially free decay, since
most of the surface ice had by that time disappeared. The slope of this
straight line gives a relaxation time at this site of approximately 1760 yr.
Since the Laurentide ice sheet had a radius of approximately 15°, its re-
laxation spectrum is dominated by harmonic degree / = 6. If we substitute
(s')" = 1760 yr and / = 6 in Eq. (2.44) and solve for the viscosity, we
obtain v, =~ 10*! Pa sec (10?2 P), which demonstrates in a completely un-
complicated way how this number is obtained.

2.4. The Phenomenological Utility of the Generalized Burgers Body

The brief discussion in the preceding subsections should be seen as an
argument in favor of the phenomenological utility of a particular viscoelastic
rheology which appears to be uniformly valid in time. The generalized
Burgers body has 5 parameters (g, v, T\, T3, and Q,,), which along with
the density p are to be determined by fitting the model to geophysical
observations such as the elastic gravitational free oscillations and postglacial
rebound. In this phenomenological approach, what one hopes to do is fix
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all of the parameters of the model by fitting a subset of the totality of
geodynamic observations and then check the validity of the model so de-
termined by predicting other geophysical observables. An example of this
approach applied to the short time scale parameters is to fix 7;, 75, and
@,(r) using free oscillation data and then use the model to predict the Q
of the Chandler wobble; an analysis of this sort has been completed by
Smith and Dahlen (1981). A second example applied to the long time scale
parameters is to use postglacial rebound to fix »,(r) and then use », in mantle
convection models of the sea-floor spreading process. A discussion of this
idea has been given by Peltier (1980b).

It should be recognized, however, that the above approach is purely phe-
nomenological in that there is no guarantee that the constitutive relation
which we employ can be given rigorous microphysical justification. What
we would eventually like to accomplish is a direct derivation of this relation
from solid-state physical principles concerned, for example, with the dy-
namics of dislocations. The macroscopic approach which we have elected
to take will nevertheless provide rather clear guidelines which will have to
be accommodated by any successful microphysical model. One might make
the obvious analogy here with simple liquids. Although one cannot, for
liquids, directly derive the Navier-Stokes equations which describe their
macroscopic behavior from simple statistical-mechanical first principles
(which can be done for gases), this does not make the Navier-Stokes

300

200

RSL (m)

kyr BS

FiG. 7. Relative sea level curve obtained from radiocarbon-dated beach material in the
sequences shown in Fig. 6. Ages have been corrected to give proper sidereal age; the solid curve
is the prediction of a theoretical model.
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FI1G. 8. Log-linear plot of the RSL data shown in Fig. 7.

equations less useful for describing the macroscopic motion of liquids.
Neither does it make the measured viscosities of liquids less useful physical
parameters.

In the next section we shall go on to apply the low-frequency limiting
form of our general rheological model to develop the theory of glacial iso-
static adjustment.

3. THE IMPULSE RESPONSE OF A MAXWELL EARTH

In the limit of low frequency, the generalized Burgers body developed
in the last section reduces to a Maxwell solid with frequency-dependent
Lamé parameters given essentially by Eq. (2.5b). although the parameter
w; which appears in the numerator of the expression for u(s) should be
replaced by the relaxed shear modulus pg. Since the elastic defect is small,
however, which it must be to fit seismic observations, we may safely neglect
this effect in constructing a model for glacial isostatic adjustment. This
argument justifies use of the Maxwell constitutive relation

a; = Ns)ei; 6; + 2u(s)ey 3.1



DYNAMICS OF THE ICE AGE EARTH 35

with 5
_As+ uK/y
A(s) = ————“—S % oy (3.2a)
M
uls) = -l (3.2b)

where we have now dropped the subscript 1 on X and g, which denotes the
instantaneous elastic value, and on », which distinguishes it as the long time
scale parameter. In constructing our model of glacial isostatic adjustment
we will assume that the elastic Lamé parameters \ and x are known func-
tions of radius determined by the systematic inversion of body wave and
free oscillations data and that »(r) is to be determined by fitting the model
to isostatic adjustment observations.

3.1. The Observed Elastic Structure of the Planet and Its
Physical Interpretation

In Fig. 9a we show a representative spherically averaged elastic earth
model which fits a large fraction of the seismic data set. The parameters
which describe this model are A and u and the density field p, which in the

plgm/cm?); Vp Vs (km /sec)

(b}

22t 1
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ao, -
1608 08 0f 02z 00
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FIG. 9. (a) Radial elastic structure of model 1066B of Gilbert and Dziewonski (1975). Note
the presence of discontinuities of the elastic parameters at depths of 420 and 670 km associated

with solid-solid phase transformations. (b) Several of the mantle viscosity models which are
discussed in the text.

log v
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figure have values equal to those in model 1066B of Gilbert and Dziewonski
(1975). Actually, we have not shown A and p individually in this figure, but
rather have given the velocities V, = V(A + 2u)/p and V; = m of longi-
tudinal and transverse elastic waves, respectively. Inspection of this figure
clearly reveals the major regions into which the planetary interior may be
divided: the small solid inner core; the liquid outer core, in which V, = 0;
the lower mantle, beneath 670 km depth, throughout which V,, V., and
p increase smoothly; the transition region marked by the presence of two
discontinuities in V), and V; at about 420 and 670 km depth (the deepest
of which has a somewhat larger associated density jump); the upper mantle,
between about 30 and 420 km depth, in which the physical properties also
change smoothly; and finally the crust, which extends to about 30 km depth
(above the so-called Mohorovicic discontinuity), in which the density is low
and seismic wave speeds are slower than in the underlying mantle.

The physical explanations of the major divisions of the interior have been
well understood for some time. The most important division, that between
core and mantle, is clearly chemical in origin, the mantle being essentially
a mixture of iron and magnesium silicates and the core consisting of a
mixture of iron alloyed with some lighter element (e.g., Jacobs, 1975). The
density jump between the solid inner core and the liquid outer core contains
a small contribution due to the fact that the light alloying element is expelled
into the melt as the solid inner core freezes; this idea is useful to dynamo
theorists, since the process is expected to drive a compositional convection
which would provide an extremely efficient energy source for the geomag-
netic field (Braginski, 1963; Loper and Roberts, 1978).

Only rather recently has a fully satisfactory explanation of the seismic
discontinuities at 420 and 670 km depth in the mantle been provided.
Although Ringwood and Major (1970) showed by direct high-pressure ex-
periment that the 420-km boundary was due to a solid-solid phase transition
of the low-pressure phase olivine to the high-pressure spinel structure, only
very recently (Yagi et al., 1979) has high-pressure diamond anvil technology
advanced to the extent that the regime of higher pressures (and greater
depths) could be assessed directly with experiments in which thermody-
namic equilibrium prevails. In Fig. 10 we show a phase equilibrium diagram
from Jeanloz (1981) for the system (Mg, Fe),SiO, as a function of pressure
at a fixed temperature of 7= 1000°C. Inspection of this figure clearly shows
that the 670-km discontinuity is also due to a phase change, in this case
from spinel to a mixture of perovskite + magnesiowustite. Data discussed
in Yagi et al. (1979) show that the increase in density which occurs in this
transition is just that which is required to explain the seismically ob-
served increase. As explained in Jeanloz (1981), the olivine — spinel and
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spinel — perovskite + magnesiowustite transitions are fundamentally dif-
ferent. The former involves no change in the atomic packing configuration,
whereas the latter is a true high-pressure transformation in the sense that
such a change of coordination does occur. In my view, these new data may
severely undermine the idea which has been prevalent in the geophysical
literature for some time (e.g., Anderson, 1981) that there is a significant
change of mean atomic weight (i.e., chemistry) across this boundary. Most
of what we know about the mantle suggests that it is very nearly homo-
geneous chemically. The only apparent exception to this is the recent in-
formation on the degree of mantle mixing which has been derived from
studies of the Rb-Sr and Nd-Sm isotopic systems which seem to suggest
that the mantle consists of two fairly distinct isotopic reservoirs, one of
which is essentially “primitive” in its content of radioactive elements and
the other of which is essentially depleted. Given preexisting ideas in the
literature to the effect that the 670-km discontinuity is a chemical boundary,
it 1s perhaps not surprising that geochemists have tended to associate the
primitive reservoir with the lower mantle and the depleted reservoir with
the upper mantle, although their data give no direct information concerning
the location of these apparently required reservoirs. The last of the bound-
aries evident in the spherically averaged model shown in Fig. 9, that between
crust and mantle, is clearly influenced to a nonnegligible degree by lateral
heterogeneity connected with differences between oceans and continents.
Such lateral heterogeneity of the near-surface elastic structure should not
be too important to viscoelastic relaxation, however, since all of this het-
erogeneity is contained in the low-temperature, high-viscosity lithosphere
in which flow may occur only on extremely long time scales.

3.2. Formulation of the Viscoelastic Problem for Models with
Radial Heterogeneity

In order to describe the viscoelastic response of realistic earth models
with the rather complicated elastic structure shown in Fig. 9, we are forced
to extend the discussion in Section 2.3 considerably, both to include strong
radial heterogeneity of p and x and to include the effect of finite A (com-
pressibility). The mathematical problem is that posed by the linearized ver-
sions of Egs. (2.17) and (2.18) in the quasi-static limit, which we will rewrite
for convenience as

V.o — V(pgu-e,) — poVe, — gop:1é, = 0 (3.3)
T:(b] = 4176,0[ (3'4)

where the density perturbation p, is obtained from the linearized continuity
equation as
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p1 = —poV-u — u-(d,00)é, (3.5)

The momentum equation (3.3) has been linearized with respect to pertur-
bations from a background hydrostatic equilibrium configuration (po, po,
¢o) which satisfies
Voo = —pogoé, (3.6a)
Vo = 47 Gpq (3.6b)

In Egs. (3.3) and (3.4) the gravitational potential perturbation ¢, will in
general be the sum of two parts, ¢, and ¢s, which are respectively the
potential of any externally applied gravitational force field (the load) and
that due to the internal redistribution of mass effected by the load-induced
deformation.

We will require solutions to Egs. (3.3) and (3.4) which describe the de-
formation of the radially stratified planet induced by surface loading, Since
the response to an arbitrary load can be obtained by convolution with an
appropriate point-load Green’s function and since symmetry considerations
demand that this response depend only upon r, s, and the angular distance
from the point load 6, fundamental solutions are spheroidal and have the
following vector harmonic decompositions:

= 2 (Ui(r, )P, (cos 0)é, + Vi(r, 3) oo (cos 0)é;) (3.7a)
=0

¢, = z @;{r S)P‘: Cos 9) (371'))
=0

V-u= 2 x(r, s)P,(cos §) (3.7¢)
=0

Substitution of Eq. (3.7) into Eq. (3.3) reduces these field equations to the
following set of three simultaneous second-order equations:

e 2. l+1
P+ - d — ( = ) ¢ = —4xG(pox + polU) (3.8a)
0=—po® + PagoX ~ Po d(goU)/dr + d(\x + 2uU)/dr
+ (u/rHarU —4U + [l + 13V = U - r¥) (3.8b)

d g ¥
0= —po® — pagol + Ay + rgr [p(V— —r~ -+ g)]

-
+(IDISU + 3rV = vV =2[1 + 1)V] (3.8¢)
in which the dot denotes differentiation with respect to r and

— I+ 1
X = U+;U—¥ Vv (3.8d)
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& + (2/r)go = 47 Gpo (3.8¢)

in all of which it is understood that U, V, @, x, A, and u stand for U;(r, s),
Vi(r, s), ®(r, 5), xi(r, 8), \Mr, 8), and u(r, s), respectively. Equations (3.8a-
¢) may be rewritten as a set of simultaneous first-order equations in terms
of a vector Y, the elements of which are

Y = (U, Vi, Ty T, @41, Q1) (3.9)
where 1 ,
Tu = A+ 2uU; To=p(Vi— 5 Vi + - &) (3.10)
+
Qg ‘1’; + ({‘r—l) ‘t’; + 471'Gp0U;
dY/dr = AY (3.11)
where the elements of the A matrix are
=( 2018, H-i— DA/rB, 1/8, 0, 0, 0) (3.12a)
= (=1/r, I/r, 0, 1/u, 0, 0) (3.12b)
A
Pof r r ﬂ&e() ] rﬁ .
g{+1)’ _@_(Hl),po) (3.120)
r r
o (¥~ 22], L - A
Ay = (r [Pué’o o T [2u — I/ + (v + w)]. pE
=3/r, polr, 0) (3.12d)
as; = (—4Gpg, 0, 0, 0, —=(/+ 1)/r, 1) (3.12e)
s = (—41er0[(f + 1)/r], 4xGpol(l + 1)/r, 0, 0. 0, ——“i_r l) (3.12f)
where
B = Mr, 8) + 2u(r, s) (3.13a)
5 &b 55 3N(r. 8) + 2u(r. 5) (3.13b)

Ar. §) + u(r. s)

Now the solution 6-vector which solves Eq. (3.11) may be represented quite
generally as a linear superposition of six linearly independent solutions. The
combination coefficients in this linear superposition are determined by the
boundary conditions at the endpoints of the domain 0 = r = a. Three of
the required six boundary conditions are that L. 1. and ¢ be regular at the
origin r = 0. The remaining boundarv conditions depend upon the physical



DYNAMICS OF THE ICE AGE EARTH 4]

conditions which obtain at r = a. In Section 2.3 we assumed homogeneous
boundary conditions Eq. (2.38) at r = a and deduced an analytic expression
for the relaxation spectrum of the incompressible model with constant phys-
ical properties. In the next subsection we will discuss the properties of the
relaxation spectrum of realistic earth models with elastic structure fixed to
that shown in Fig. 9.

3.3. Normal Modes of Viscous Gravitational Relaxation

When the effect of radial stratification of the earth model is included, the
elements of the secular matrix M in Eq. (2.39b) must be determined nu-
merically. In order to do this, we proceed by integrating the system of
equations (3.11) for each harmonic degree / from the center of the earth
to its surface. We employ a standard “parallel shooting” method, in which
the system is integrated from depth to the surface using three linearly in-
dependent starting vectors determined from the three linearly independent
solutions which solve Eq. (3.11) for a homogeneous compressible sphere.
These solutions are given explicitly in Wu and Peltier (1982a). As / increases,
the starting depth is decreased and the properties of the homogeneous sphere
which determine the starting solution are taken equal to those at the starting
depth. Propagation of each of the linearly independent solutions to the
surface r = a generates values of 77;, 7%, and Q} where j = 1, 3 denotes
the number of the “shot.” For homogeneous boundary conditions (2.38),
it then follows from the linearity of the differential equations that the secular
condition is given by

Dy(s,1)=0 (3.14)

where Ds(s, /) is as defined in Eq. (2.22). The similarity between the problem
of viscous gravitational relaxation and the problem of spheroidal free os-
cillation is therefore further reinforced. As pointed out previously, the to-
tality of the normal-mode frequencies are represented as points in the com-
plex s plane. In such a representation the quasi-static modes appear as points
on the negative real s axis as shown previously in Fig. 5a,b and therefore
have frequencies which are purely imaginary. Figure 11 shows a plot of the
secular function D;(s, /) for / = 6 and for an earth model whose viscosity
profile is shown in Fig. 9b as model | and whose elastic structure is as in
Fig. 9a. The entire core is taken to have zero viscosity, the viscosity of the
mantle is 10" Pa sec (10% P, v is in poise in the figure) throughout, and
the model has a 120-km-thick lithosphere in which » is infinite. Inspection
of Fig. 11 shows that for fixed / there are several modes for a given value
of / rather than one as was found for the homogeneous earth model.
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FIG. 11. The secular function for the spheroidal system for angular degree / = 6 as a function
of the Laplace transform variable s.

Relaxation diagrams for all three of the viscosity models shown in Fig.
9b are shown in Fig. 12a.b,c (from Wu and Peltier, 1982a). On these dia-
grams we have plotted on a log-log scale the inverse relaxation time of each
mode as a function of spherical harmonic degree /. Relaxation times have
been nondimensionalized with a nominal time of 10 yr, so that where
log(—s) = 0 the relaxation time is 10° yr, whereas where log(—s) = —1 the
relaxation time is 10* yr. Visible on each of these three plates are six modal
branches, which are marked L0, M0, M1, M2, CO, and C1. These distinct
branches are analogous to the various body wave and surface wave branches
which are visible on the dispersion diagram for the elastic gravitational free
oscillations (e.g., Gilbert and Dziewonski, 1975) in that they owe their ex-
istence to specific physical properties of the radially stratified viscoelastic
earth model. The MO branch is the fundamental mode of the mantle, which
corresponds to the single mode which exists in the homogeneous earth
model discussed in Section 2.3. However, along this branch the relaxation
time does not increase continuously with increasing spherical harmonic
degree as predicted by Eq. (2.44) for the homogeneous model. Rather, for
angular order / greater than about 30, relaxation time decreases with in-
creasing /. This effect is due to the presence of the lithosphere and was first
demonstrated by McConnell (1968) for half-space models. McConnell dis-
covered this characteristic behavior in his deconvolution of Sauramo’s
(1938) shoreline data and used it to measure the thickness of the lithosphere.
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As well as altering the fundamental-mode relaxation curve in this way, the
presence of the lithosphere also introduces a second modal branch, which
is labeled LO in the figures. As discussed in Wu and Peltier (1982a), the
modes along this branch are not efficiently excited in general and so play
no substantial role in viscoelastic deformation. At large / the MO and LO
modal lines converge, and this is simply a mathematical manifestation of
the physical fact that for sufficiently short wavelength (large /) all viscoelastic
relaxation is suppressed, since such short-wavelength disturbances are com-
pletely controlled by the perfectly elastic lithosphere. The CO branch on
each of the modal diagrams is supported by the density contrast across the
core-mantle boundary, and inspection of the relaxation diagrams shows
that the MO, L0, and CO branches are more closely interleaved for the
uniform viscosity model (Fig. 12a) than they are for the other models which
have moderately high lower mantle viscosity (Fig. 12b,c). In fact, in both
the models with high lower mantle viscosity (models 2 and 3 of Fig. 9b) the
relaxation times along the CO branch are very nearly one order of magnitude
larger than they are in the uniform viscosity case. This may be simply
understood in terms of the variational principle derived in Peltier (1976).
Since the core mode is sensitive only to lower mantle viscosity and since
the lower mantle viscosity is one order of magnitude greater in models 2
and 3 than it is in model 1, the relaxation times for this mode are increased
by one order of magnitude according to the variational formula. The re-
maining modes M1, M2, and C2 on this diagram have considerably larger
relaxation times than do the modes MO, L0, and C0. Modes M1 and M2
are supported by the density jumps across the 670-km and 420-km discon-
tinuities, respectively, whereas C1 is supported by the density contrast be-
tween the inner and outer cores. Of this sequence of long relaxation time
modes, M1 is by far the most important, since it is the most efficiently
excited by surface loading (Wu and Peltier, 1982a). It is at least in part a
consequence of the excitation of this mode that models with uniform mantle
viscosity are able to reconcile free-air gravity and RSL data simultaneously,
as we shall see.

In Fig. 13 we have plotted relaxation time versus angular order for the
fundamental mantle modes MO of each of the previously discussed viscosity
models numbered 1-3 in Fig. 9b. Also shown is the corresponding modal
curve for a model numbered 4, which differs from 3 only in that the viscosity
in the sublithospheric low-viscosity zone is 10°° Pa sec (10! P) rather than
10'° Pa sec (10°° P). Superimposed upon these modal curves are hatched
regions denoting observational estimates by various authors of the relaxation
times for specific spatial scales. Also included is the 7(ky) spectrum deduced
by McConnell (1968) from Sauramo’s shoreline data, which must, however,
be considered unreliable at both the longest and shortest relaxation times.
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FIG. 13. Relaxation time versus angular degree for the sequence of viscoelastic earth models
discussed in the text. The hatched regions represent estimates of relaxation times for specific
horizontal scales by the authors noted.

- The greatest disagreement evident in this diagram is that between Andrews
(1970) and Walcott (1980) concerning the relaxation time for the / = 6
harmonic, which is deduced from the observed uplift of Hudson Bay after
removal of the Laurentide load. Andrews’s estimate of the relaxation time
is based upon the shoreline data from the Ottawa Islands and some other
locations and is between 1700 and 1900 yr. Our analysis in Section 2.3 of
the Richmond Gulf data of Hillaire-Marcel and Fairbridge (1978) gave a
relaxation time of 1760 yr and therefore agrees with Andrews’s. Walcott’s
(1980) estimate is from a site near the Ottawa Islands and is based upon
radiocarbon ages of shells and shell fragments of a single species (Mytilus
edulis). He claims that the shortest relaxation time allowed by the data is
about 4000 vr but that the actual relaxation time could be very much longer
(i.e., >10.000 yr). Inspection of Fig. 13 shows that the minimum difference
of a factor of 2-4 between Andrews'’s and Walcott’s estimates of the relax-
ation time of the { = 6 harmonic is the difference between the model with
uniform mantle viscosity and the model whose lower mantle viscosity is
higher than 10?' Pa sec by at least one order of magnitude.

It should be quite clear on the basis of the complete relaxation diagrams
for several viscosity models shown in Fig. 12, that attempts to constrain the
mantle viscosity profile by comparing one modal branch of these diagrams
to crude estimates of relaxation time for specific spatial scales of defor-
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mation, such as is done on Fig. 13, is an inaccurate process at best. There
1s a good analogy which can be profitably drawn here between the inter-
pretation of isostatic adjustment data and the interpretation of body wave
seismic data. Very considerable advances in the latter area have been
achieved by interpreting not only the times of arrival of the various phases
but also the amplitudes of the waveforms themselves—which requires the
construction of synthetic seismograms (e.g., Aki and Richards, 1980). We
may consider the arrival times for specific body wave phases to be analogous
to the relaxation times for specific horizontal scales. In order to improve
the accuracy of our inferences of mantle viscosity from isostatic adjustment
data. we are obliged to develop a theory for the equivalent in glacial isostasy
of the synthetic seismogram in seismology. As we will see in Section 4,
when we require the theory to predict isostatic adjustment amplitudes as
well as decay times, then much of the ambiguity of interpretation evident
from Fig. 13 may be removed. In the next subsections we will begin to
develop the theoretical apparatus required to construct the synthetic “re-
laxograms” of glacial isostasy.

3.4. Love Number Specira for Impulsive Forcing

In order to calculate the viscoelastic deformation of the planet’s shape
produced by glacial loading, we have simply to solve the field equations
(3.3) and (3.4) with the appropriate boundary conditions. What we do in
practice is to consider first the response of the planet to a surface point-
mass load which is applied as a Dirac delta function in the time domain.
To determine the appropriate boundary conditions for this problem we treat
the point-mass load < as a uniform disk load of vanishingly small radius
«. Expanding v in a Legendre series then gives

y = 2 T,Pi(cos ) (3.15)
=0
in which the T'; are given by (Longman, 1963; Farrell, 1972)
_ 2l 118
T 4 (3-16)

in the limit @ — 0. The surface boundary conditions (Longman. 1963;
Farrell, 1972) are that V¢,-é, change by 4wy across r = a. that
(Vos + 4xGpu) - é, be continuous, that the normal stress balance the applied
load so that o, (a¢) = —+vg, and that the tangential stress vanish so that
o~(a) = 0. When these boundary conditions are expanded in spherical har-
monics the expansion coefficients are forced to satisfy

T,(a) = —¢gI; Tula) =0 Q:(a) = —4xGT, (3.17)
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which are the conditions which replace Eq. (2.38) for the inhomogeneous
problem under present consideration. Since the surface load is assumed to
be applied as a delta function in the time domain, boundary conditions
(3.17) are independent of the Laplace transform variable in the domain of
which the field equations (3.3) and (3.4) must be solved. These boundary
conditions suffice to completely determine the three other elements of the
solution 6-vector Y = (U}, V), T, Ty, ¥,. Q)" at the surface r = a and
throughout the earth. By analogy with the surface loading problem for an
elastic sphere it is convenient to describe these remaining elements in terms
of a triplet of dimensionless scalar Love numbers (4, [;, k;) which are func-
tions of r, /. and s defined through the relations

Ui(r, s) | [ hu(r, 9)/go
Vi(r,s) | = 25,(n] L(r.s)/g (3.18)
D34(r, 5)_ L“ ki(r, s)
Using Eq. (3.18) we may write the total potential perturbation as
Pry=— Poyt By =— oy(l + k) (3.19)

where the coefficients in the expansion of the potential of the surface load
¢,, are obtained from the definition

Gy(r) d*r’

=]

#a(s) = (3.20)
in which integration is over the earth’s surface. If we substitute for v(r) in
terms of its Legendre expansion Eq. (3.15) and use the addition theorem
for spherical harmonics (e.g., Jackson, 1962) we find

Z 4raG
baa, 0) = % ST+ 1 TiPilcos 6) (3.21)
so that -
_ dra ! @
&y,(a. 0) = 2l M, (3.22)

where M. is the mass of the earth and g, the surface gravitational acceleration
as before.

In Fig. 14 are shown example Laplace transform domain Love number
spectra for an earth model with viscosity structure similar to that of model
I in Fig. 9b and with the elastic structure shown in Fig. 9a. These spectra
are found by direct integration of the simultaneous ordinary differential
equations (3.11) subject to boundary conditions (3.17) for a sequence of
values of s along the positive real s axis in the complex s plane. Two al-
ternative representations of the Love number spectra /;(a, s) at the earth’s
surface are shown in Fig. 14, one an x-) plot of A;(a, s) for various values
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of / marked on the figure, which is for a model with no lithosphere, and
the other a three-dimensional plot of the form of the spectral surface, which
is for a model which includes a lithosphere. Several important features of
these spectra are evident by inspection of the diagram. Most important is
the fact that the spectra achieve asvmptotic amplitudes both for sufficiently
large and for sufficiently small values of the imaginary frequency s. In-
spection of Eq. (3.2) shows that in the limit s — oo the moduli A(s) and
u(s) become equal to their elastic values, so that in this limit the Love
numbers become asymptotically equal to the Love numbers for an elastic
sphere (e.g., Longman, 1963; Farrell. 1972). In this limit, our calculations
agree with those of previous authors. In the opposite limit s — 0, A\(s) —
K. the elastic bulk modulus, and u(s) — »s, so that the Maxwell solid be-
comes like an incompressible viscous fluid. The existence of the small s
asymptote is indicative of the existence in this limit of a new state of viscous
gravitational equilibrium. As we will show, this is the state of isostatic equi-
librium which obtains in the limit of long time. Also evident by inspection
of the spectra shown on this figure (for the model with a lithosphere) is the
fact that for sufficiently short wavelength the small s asymptote is reduced
to equality with the large s asvmptote and this is due to the complete
suppression of viscous relaxation at the shortest wavelengths. In order to
understand the meaning of the spectral asymptotes at small values of s, we
need only consider the inversion of these spectra into the time domain.
Since each of the Love numbers /;(a. $), [;(a, 5), k,(a. 5s) has a spectrum
similar to those shown in Fig. 14. they can all be expanded in the form

hi(a, s) = h)(a. s) + hF(a) (3.23)

where Ahf(a) are the elastic asymptotes and 4 (a, 5) therefore represents the
viscous contribution to the response. The Laplace inverse of Eq. (3.23) is
just ; ’
h(a, 0)=— | h'(a s)e® ds+ hi(a) é() (3.24)
21”' £
Now the integral along the Bromwich path £, in Eq. (3.24) may be eval-
uated using Cauchy’s theorem. which allows us to write

residues at the poles
f hgv(a, s)e’ ds = ‘f h;"{a, e ds + 2xi 3. of the integrand (3.25)
i £ inside (L, + £,)
Since the first integral on the right-hand side of Eq. (3.25) goes to zero as

the radius of the semicircle tends to infinitv, Eq. (3.24) therefore reduces
1o

h(a, 1) = ]:reSIdues at the poles of the

E
integrand inside (L, + .Cz):l +hyta) o 3:26)
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Now the poles of the integrand A)'(a, s)e™ are located at the zeros of the
secular function Ds(s, /) in Eq. (3.14) which we determine in the way dis-
cussed in the last section. These poles are all on the negative real s axis and
we may label them s = —s/ where the s/ are =0. Furthermore, they are all
simple poles, and we may usually write

hi(a, f)= 2 riei" + hf(a) 8(1) (3.27a)
:

where the “initial amplitudes™ rj’- can be determined as follows. If ;(a. 1)
have time domain forms (3.27a), they then have Laplace transform domain
forms

hi(a, s) = 2 rif(s + s}) + hi(a) (3.27b)

J

If solutions of the inhomogeneous problem are obtained for s = +s] to give
N

W (st = h(a, sty —hfF = 2 rijsi +sh) (3.28)
i=1

and if we define the elements of the matrix m as
my = 1/(s}+ st) (3.29)
then Eq. (3.28) may be written as
h(sj) = myr! (3.30)
from which we may compute the r! as
ri=mg'h(s}) (3.31)

This collocation method provides a very efficient means of solving the in-
homogeneous problem using the discrete spectrum determined by solving
the homogeneous problem. Solutions of the inhomogeneous problem are
thereby represented in the form of a superposition of normal modes of
viscous gravitational relaxation in which the r! represent the excitation
strengths for point forcing. Given the time domain forms (3.27) for the
impulse response problem. we may employ them to compute the spectral
amplitudes required to describe the response if the load is applied at
t = 0 and then allowed to remain on the surface. These amplitudes are
obtained by convolving Eq. (3.27) with a Heaviside step function to obtain

hia. )= hla.0)x H@)
=2 (rifsp(1 —e ") + hf (3.32)
J
where the x denotes convolution in time. Now inspection of Egs. (3.32) and
(3.27) shows that
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lim Ay(a, s) = 2 rifs;+ hf = lim Aj'(a, t) (3.33)
5=0 —0

and the meaning of the small-s asymptotes of the impulse response spectra
shown in Fig. 14 is thus clear. The difference between the large-s and small-
' s asymptotes, Z;r!/s], for each value of / measures the amount of viscous
relaxation which would occur if a load of harmonic degree [ were applied
to the surface at t = 0 and left for an infinite time. In Fig. 15 we show a
sequence of plots of the viscous parts of the Heaviside Love number time
histories ,

h¥(a, 1) = Z (rj/s;)(1 — ™)

1

for several values of /. The time interval covered by these plots is 20 kyr,
and adjacent to the right margin of the figure we show the amount of
relaxation which has yet to be realized until equilibrium of that harmonic
is achieved. Given these time-dependent Love numbers for our radially
inhomogeneous viscoelastic earth models we are now in a position to con-
struct the Green’s functions which are required to calculate the response
to realistic space-time histories of surface loading. Before proceeding to
discuss this phase of the analysis. however, we will provide a brief discussion
of the method we have developed for calculation of the infinite-time re-
sponse amplitudes which are shown adjacent to the curves on Fig. 15. These
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FIG. 15. Love number temporal history Af"*¥(a, t) for several values of /. The parameter
AY is the viscous part of the Heaviside displacement amplitude and the viscosity model is
model | shown in Fig. 9b.
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amplitudes cannot in fact be computed by direct integration of Eq. (3.11)
at small values of s because in this limit the system of ode’s becomes “‘stiff
and is not directly integrable. The problem is not merely of technical in-
terest. As we will show. the accurate calculation of this long-time response
is crucial to the prediction of the free-air gravity anomaly.

3.5. Elastic and Isostatic Asymptotes of the Love Number Spectra

Although the elastic asymptotes of the individual relaxation spectra may
be calculated in a straightforward way by setting s = co in the field equations,
inspection of the individual elements of the A matrix listed in Eq. (3.12)
shows that the limit s — 0 cannot be taken directly. From Eq. (3.2), however,
we see that the limit s — 0 and the limit » — 0 are equivalent in the sense
that in either limit the shear modulus p{s) vanishes. Under this assumption,
the field equations (3.3). (3.4), and (3.5) reduce to the following forms

0= poVe, — p1gé, — Vp (3.34a)
Ve, = 47Gp, (3.34b)
pr = —poV u— u-(d,p0)é, (3.34c)

where we have introduced a pressure field (mean normal stress) through the
association p = u- pogoé, — Ke;;. The static deformation of an inviscid part
of the earth has most recently been discussed by Dahlen and Fels (1978),
whose analysis agrees with previous conclusions of Smylie and Mansinha
(1971) and others. There it is shown that fluid particles undergoing a quasi-
static deformation experience changes neither of pressure nor of density as
the deformation proceeds. It therefore follows that the dilatation is zero
everywhere. Substituting V- u = 0 in Eq. (3.34¢) and expanding all variables
in spherical harmonics reduces (3.34a,b) to (Wu and Peltier, 1982a)

I(+1) 47er0:l‘i’ -0

o (3.35a)

£o
U=—-®/g (3.35b)

7
a’fd:-l—id,@—li

In Eq. (3.35b). Uis to be interpreted as the displacement of an equipotential,
isobaric, or material surface. Using Eq. (3.10) we may reduce Eq. (3.35a)
to a set of two simultaneous ordinaryv differential equations in the 2-vector
Y' = (&, Q) of the form

dy'

—d;" =A'Y! (3.36a)

; 47Gpolgy — (I + 1)/r 1 i
Al = (3.36b)
4=Gpoll — )/gor (I — 1)/r — 4=Gpo/go

where
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In order to calculate the spectral asymptotes at s = 0 we must match
solutions of Eq. (3.36a) across the mantle-lithosphere boundary to the elas-
tic solutions which are valid in the lithosphere itself. If ®}(b7) and Q}(b7)
are solutions of Eq. (3.36a) just below this boundary, then the solution just
above the boundary is given by

Cuwh [-UMee®)]
Vi(b") 0
T |_ o 0
Tul(b) 0
®,(b") oMb
o] L o)

0] 3 1 g
1 1
0 po(b7)go(b)
+ G . +G| ™ 5 ? (3.37)
0 0
| 0 i _4TerQ(b_) _

where b is the radius of the mantle-lithosphere interface and the C; are
determined as usual by satisfying boundarv conditions (3.17). It will be
recognized that this procedure for calculating the infinite-time spectral
asvmptotes is identical to the procedure which must be followed at arbitrary
s for matching solutions in the inviscid core to solutions in the mantle
across the core-mantle boundary. The procedure is perfectly stable nu-
merically.

3.6. Green's Functions for the Surface Mass Load Boundary
Value Problem

Green’s functions for the gravitational interaction problem may be com-
puted for various signatures of the response by summing infinite series like
Eq. (3.7). In general these Green's functions may be written as the sum of
an elastic part and a viscous part due to the fact that the Love numbers
themselves can be so expanded. From Eq. (3.7b) we see that the Green’s
function for radial displacement may be written in terms of the Love num-
bers Af(a, 5). assuming Heaviside forcing in time, as
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U0 8) 1012
8

=110t

FiG. 16. Radial displacement Green’s function (8, 1) for viscosity model 1 shown in Fig.
9b. The Green's function has been multiplied by afl to remove the geometric singularity at
f=0.

B0, 1) = 2 3 h(a, )P (cos 0) (3.38)
Me =0
Similar forms may be constructed for the perturbation of the gravitational
acceleration a(f, f) (the “gravity anomaly”) and for the perturbation of the
gravitational potential ¢(f, ¢) which may be shown (Longman, 1963) to
have the forms

oM, 1) = f; S [+ 28 — (L + DK Py(cos 0) (3.39)
e [=0

oM, 1) = % S (1 + K — A1) Py(cos 6) (3.40)
e /=0

In Egs. (3.39) and (3.40) the Love number independent terms are due to
the direct effects of the surface load, the terms involving /i, are due to the
displacement of the earth’s surface, and those involving A; are due to the
internal redistribution of matter produced by the time-dependent displace-
ment field associated with the adjustment process. Once we have calculated
the Love numbers, the Green’s functions are obtained simply by summing
the above infinite series, which is a straightforward process except in the
elastic limit, where acceleration techniques such as the Euler transformation
must be emploved (Peltier. 1974).
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One example of a Green’s function is shown in Fig. 16, which illustrates
the viscous part of the radial displacement response (3.38) for the model
with uniform mantle viscosity and 1066B elastic structure. Again we give
two presentations of this function. The first is a simple sequence of x-y
plots which show #¥(6, 1) as a function of § for several values of / marked
adjacent to each curve in kiloyears. The Green’s function has been mul-
tiplied by aff to remove the geometric singularity which would otherwise
occur at # = 0 for plotting purposes. We also show in this figure a full three-
dimensional view of the u™V(8, 1) surface. Either representation shows that
the viscous response is zero at ¢ = 0 as it must be from Eq. (3.32). As time
passes, the surface sags under the load while peripheral to the load the local
radius is increased. As we shall see in the next section, it is the collapse of
this so-called peripheral bulge which explains the submergence of shorelines
in the region just outside the ice sheet margin which obtains along the east
coast of North America. Also evident from inspection of Fig. 16 is the fact
that for the uniform viscosity model the peripheral bulge migrates in time.
This effect is absent in models which have high lower mantle viscosity
(Peltier, 1974), and so observations of bulge migration can be quite diag-
nostic of the deep viscosity structure of the earth.

Having constructed Green’s functions for the radially stratified visco-
elastic earth model, such as that shown in Fig. 16, we can proceed to cal-
culate the response of the planet to an arbitrary known history of surface
mass loading. This response must in general include the elastic contribution.
In the next subsection we will illustrate the characteristic patterns of de-
formation which are forced by parabolic disk load approximations to the
major Pleistocene ice sheets.

3.7. Response to Simple Disk Load Deglaciation Histories

Convolution of the Green’s functions over simple circular disk loads
involves a straightforward exercise in spherical trigonometry, the details of
which are provided in Wu and Peltier (1982a). Rather than repeat these
details here, we will simply describe a few of the most interesting results
which have been derived from such calculations. Figure 17a.b,c shows the
radial displacement response forced by surface loading with a circular disk
with parabolic thickness profile with disk radius and mass chosen to give
reasonable approximations to the Lake Bonneville, Fennoscandia, and Lau-
rentide loads, respectively. All calculations have been performed with the
Green’s function for viscosity model 1 shown in Fig. 9b and are based upon
the assumption that the disk load is applied to the surface at = 0 and left
in place. The computed response is therefore that which would be produced
by instantaneous glaciation of the surface, not deglaciation. The disk radii
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which approximate the loads at these three sites are shown on the individual
plates by the thin solid line which extends from 8 = 0° at #!*Y = 0 and
ends at the edge of the disk. The radii of the Lake Bonneville. Fennoscandia,
and Laurentide disks are respectively 1.2°, 8°, and 15°. Crittenden (1963)
estimated the maximum depth of Lake Bonneville to be about 305 m,
corresponding to a mass of approximately 10'® kg, and we have used his
estimates in our disk calculations. For the Fennoscandia and Laurentide
loads our parabolic disk models are taken to have central thickness of 2500
m and 3500 m, respectively, and are based upon the ice sheet reconstructions
in Peltier and Andrews (1976). Figure 17 shows only the viscous contri-
bution to the total radial displacement response at each of these sites, and
this 1s given for the sequence of times shown in the figure caption.

The results of these simple disk load integrations illustrate several im-
portant characteristics of the isostatic adjustment process. Inspection of the
calculated response for the Lake Bonneville model (Fig. 17a). for example,
shows that the maximum amplitude of the response predicted by the model
isonly about 12 m, compared to the observed maximum of 64 m. Therefore,
although viscosity model 1, which has a 120-km-thick lithosphere, predicts
a relaxation time which is close to the observed time (Fig. 13) for the
deformation at Lake Bonneville, the predicted amplitude is enormously
underestimated. The reason for this is clearly that the lithospheric thickness
in this model is excessive for the Basin and Range region and this leads to
a suppression of the viscous relaxation, a fact previously pointed out in
reference to the Love number spectra (Fig. 14) and their time domain forms
(Fig. 15). In order to fit the observed relaxation at the Lake Bonneville site,
the lithospheric thickness can be at most 40 km. But this modification of
the model leads to a marked increase of the relaxation time for the dominant
wavelengths in the response, which must be corrected by introducing a low-
viscosity zone in the sublithospheric region. This example serves to reinforce
the comment made previously in the discussion of Fig. 13. One cannot
obtain an acceptable inference of the mantle viscosity structure on the basis
of the relaxation spectrum alone. Only if response amplitudes and relaxation
times are reconciled simultaneously will a reasonable inference result.

Comparison of Fig. 17a with Fig. 17b for the Fennoscandia model shows
that as the horizontal scale of the load increases the peripheral bulge becomes
more substantial. This is reinforced by the result for the model Laurentide
load shown in Fig. 17¢c. The maximum height of the bulge in the region
peripheral to Fennoscandia would be only about 20 m, whereas that pe-
ripheral to Laurentide would be about 70 m. Also evident as the horizontal
scale of the load increases is the fact that the slope of the surface near the
edge of the load becomes steeper, an effect which can be understood qual-
itatively on the basis of the increasing importance of the lithosphere for
smaller scale loads.
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FiG. 18. Uplift remaining at the center of Lake Bonneville, Fennoscandia, and Laurentide
depressions on the basis of the calculations shown in Fig. 17. Note the highly nonexponential
response of the large-scale Laurentide region when the uniform viscosity model (L1) is em-
ploved.

In Figure 18a,b,c we show plots of the uplift remaining at the center of
the Lake Bonneville, Fennoscandia, and Laurentide model disk loads as a
function of time for each of the viscosity models shown in Fig. 9b. Models
1,2, and 3 in Fig. 9b are labeled L1, L2, and L3 on this figure to emphasize
that the models all have lithospheres which are 120 km thick. These response
curves are all plotted on a semilogarithmic scale so that if the response were
perfectly exponential they would all appear as straight lines. Inspection of
these diagrams shows that every model predicts an increase of apparent
relaxation time with time, with the effect generally becoming more pro-
nounced as the spatial scale of the load increases and most important for
the uniform mantle viscosity model L1. Of greatest interest is the compar-
ison of Fig. 18b and ¢ for Fennoscandia and Laurentide, respectively.
Since models L1 and L3 deliver very similar response at the former site,
it is clear that for surface loads of this scale both the increase of relaxation
time and the decrease of relaxation amplitude produced by high viscosity
in the lower mantle may be compensated by a low-viscosity channel. Such
is not the case for a Laurentide-scale load, however; at least over the first
8 % 10* yr of relaxation, models L2 and L3 deliver very similar response,
so that the influence of the low-viscosity channel is very small. The most
important point to recognize by inspection of Fig. 18c is that the response
curve for the uniform mantle viscosity model L1 is strongly nonexponential
in shape. The first 8 kyvr of the relaxation arg dominated by a relaxation
time near 2 kyr. whereas the response for times in excess of this appears
to be dominated by a relaxation time on the order of 10° yr. This dem-
onstrates very clearly the fundamental property of realistic viscoelastic mod-
els of the planet which makes it possible for them to simultaneously explain
a short characteristic relaxation time for the initial stages of isostatic ad-
justment and a large free-air gravity anomaly indicative of a large amount
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of uplift remaining. The reason for the transition in the response from one
relaxation time to another is clear by inspection of the relaxation diagram
for model L1 shown in Fig. 12a. At the dominant angular order n = 6 for
the Laurentide load the MO0, C0O, LO modes all have relaxation times of
about 2000 yr, and the initial response will therefore be dominated by a
response time of this order. For this model. however, the M1 mode asso-
ciated with the density jump across the phase transition at 670 km depth
is also efficiently excited, and it has a relaxation time of about 2 X 10° yr.
The transition from short to long relaxation time for the Laurentide-scale
load and viscosity model L1 is therefore completely explained on the basis
of initial MO (C0) and final M1 dominance of the response. As we will see
in the following sections, this property of realistic viscoelastic models is
crucial to understanding several different phenomena associated with glacial
isostatic adjustment. The prediction of this characteristic of the adjustment
mechanism must be considered one of the most important successes of the
modern theory of this process.

4. POSTGLACIAL VARIATIONS OF RELATIVE SEA LEVEL

Although the radial displacement response curves for simple disk load
approximations to actual deglaciation events provide extremely useful in-
sights into the actual histories of isostatic adjustment contained in the Qua-
ternary geological record, they are imperfect approximations to these his-
tories in many important respects. The problem is not simply that the ice
sheets are not circular disks with parabolic cross sections which are removed
and applied instantaneously. It is more fundamental. Relative sea level data
such as those shown in Fig. 7 can be considered as measures of the change
in local radius of the earth only to the extent that the local surface of the
ocean (the geoid) can be assumed to have maintained a constant local
distance from the earth’s center of mass throughout the period of isostatic
adjustment. If this were the case, then the flights of beaches cut into con-
tinental coastal areas. such as those shown in Fig. 6, would measure the
local radial displacement histories exactly. This view turns out to be some-
what naive for the following reason. As the earth deforms in response to
the melting of its surface ice sheets there is a discharge of meltwater to the
ocean basins. which raises the elevation of the sea surface (geoid) with
respect to the center of mass of the earth. If this increase of level were
uniform. then it would be possible to simply correct the computed radial
response curves for the increase in water level, and the response due to
ocean loading could be simply added to the response due to glacial unloading
at any point of interest. In fact. the meliwater produced by ice sheet dis-
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integration cannot be added uniformly to the ocean basins since this would
violate the equilibrium constraint that the geoid remain an equipotential
surface. As the ice sheets melt, water is distributed over the ocean basins
in the unique fashion required to ensure that the surface remains equipo-
tential. In order to calculate postglacial variations of RSL accurately we are
forced to develop a theory which is capable of predicting global histories
of meltwater redistribution. In the next subsection the structure of this
theory will be developed and discussed.

4.1. An Integral Equation for Relative Sea Level

The sea level equation which we will derive is based upon the Green’s
function for the perturbation of the gravitational potential defined in Eq.
(3.40). Its structure will be most clearly understood if we begin by supposing
that all of the ice sheets which were on the surface at glacial maximum
melted instantaneously. If L(f, ¢) is used to denote the ice thickness removed
from position (8, ¢) at ¢ = 0 and S(0, ¢, ) the amount of water added to
the ocean at position (f. ¢) and time ¢, then we may compute the net change
of potential at any position on the surface by convolution of the surface
loads L and S with the Green’s function ¢! in Eq. (3.40) to obtain

®(0. ¢, 1) = pip" * L + pwo™ % S (4.1)
1 0

where * and * indicate convolution over the ice and water. respectively, and
I o

p and pyw are ice and water densities. From Eq. (3.40) it is clear that Eq.
(4.1) includes the change of potential due to the vertical displacement of
the solid surface of the earth since the Green’s function contains the Love
number /,. The change of potential given by Eq. (4.1) will force an ad-
justment of the thickness of the seawater locally in the amount (Farrell and
Clark. 1976)

» d!(ﬂ.gq), 3} i

S (4.2)

where the constant C is chosen such that conservation of mass is ensured.
Now Eq. (4.2) is a result of first-order perturbation theorv, which is valid
for sufficiently small changes of the local bathymetry S. It is important to
note that S is. by construction, the local variation of sea level with respect
to the deformed surface of the solid earth and is thus precisely the quantity
which is recorded in RSL data such as shown in Fig. 7. Substitution of Eq.
(4.2) into Eq. (4.1) leads to the equation
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S = p(¢"/2) ¥ L + pw(e"/g) - S+C (4.3)

In order to determine the constant C we note that the integral of pwS
over the surface of the oceans must equal the instantaneous value of the
total mass which has been lost by ice sheet disintegration at time ¢. Therefore

(pS)o = pw (pi(97/8) * L + pu(8"/8) 2 S)o +{Cho pw
= —M\(0) (4.4)

The minus sign on the right-hand side of Eq. (4.4) is required because A(1),
the mass loss history for all ice sheets combined, is defined as negative for
load removal. In Eq. (4.4) the symbol { ), is used to denote integration
over the oceans. Since C is constant at fixed time, therefore (C), = CA,,
where A4, is the area of the oceans, and Eq. (4.4) gives
H H
C=—M-i<p[¢—w+pw‘f’—*s>a (4.5)
pwAo Ao g1 g o
With C given by Eq. (4.5), Eq. (4.3) is an integral equation for the unknown
field S(6, ¢. t) which we call the sea level equation. It is an integral equation
since S appears not only on the left-hand side but also in the convolution
integral on the right-hand side. Given the deglaciation history L(#, ¢, ), and
thus M(1), and the potential perturbation Green’s function ¢" for a specific
viscoelastic model of the planet, we may invert this integral equation to
find the history of RSL S(6, ¢, t) at any point on the earth’s surface.

This discussion should serve to make clear the basic structure of the
isostatic adjustment problem. Two inputs to the theoretical model are re-
quired before the model can be employed to make a prediction. The first
of these is a viscoelastic model of the planetary interior, whereas the second
is a model of ice sheet disintegration. Neither of these functionals of the
model is perfectly known a priori, and we are obliged to proceed iteratively
to refine our knowledge of them. We will not provide a description here
of the numerical methods required to solve the integral equation (4.3) or
the generalization of of it which describes RSL variations produced by
realistic deglaciation histories. Detailed descriptions of the numerical meth-
ods will be found in Peltier ez al. (1978) and Wu and Peltier (1982b). Before
describing the results which have been obtained through application of Eq.
(4.3), we will discuss in the next subsection how one constructs first-guess
approximations to the historyv of surface deglaciation. It is onlv because a
priori knowledge of this functional of the model does exist that we may
begin the iterative process which leads eventually to rather precise knowl-
edge of the mantle viscosity profile.
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FIG. 19. Disintegration isochrones for the Laurentide ice sheet based upon the map in Bryson
et al. (1969).

4.2. Inputs to the RSL Calculation: The Deglaciation Chronology and
Mantle Viscosity Profile

Several distinct kinds of information are required to construct reasonable
a priori models of the deglaciation histories of the major ice sheets which
existed on the earth’s surface 20.000 yr ago. Perhaps the most important
piece of information is that concerning the location of the ice sheets them-
selves, and this is provided by '“C-controlled locations of the terminal mo-
raines of these ice masses. In Fig. 19 we show a map of disintegration
isochrones based on that in Bryson et al. (1969) which shows the vanation
in space of the Laurentide ice margin during the deglaciation phase which
began at about 18 kyr B.P. Information of the same type is also available
for the Fennoscandia region. Besides the ice bound in these major Northern
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Hemisphere continental complexes, there was also considerable mass con-
tained in Alpine complexes in the Rocky Mountains, the Andes, and the
European Alps. Indeed, it was on the basis of his observations of evidence
of Alpine ice masses that Agassiz first put forward his arguments for the Ice
Age itself. As a fraction of the ice bound in the Laurentide and Fenno-
scandian complexes, however, these Alpine contributions are very small in-
deed. This is not true of the additional mass which was lost from the Ant-
arctic complex, however; evidence from this region suggests that as much
as 15-20% of the total increase in ocean volume produced by deglaciation
may have come from a large-scale melting event over the Ross Ice Shelf in
West Antarctica.

In order to estimate the total volume of ice which was bound in the major
complexes we are obliged to rely upon the RSL data themselves. Prior to
the new understanding of these data which was realized through the theo-
retical model embodied in Eq. (4.3), it was assumed by virtually all scientists
working in the field of Quaternary geomorphology that the rise of sea level
in the global ocean produced by the melting of glacial ice was a constant
independent of location. In the literature of the subject this concept is
referred to as eustatic sea level, and there has been a great deal of effort
expended to measure the eustatic sea level curve. On the basis of our pre-
vious discussion, of course, we know that this concept is of limited utility,
since sea level cannot rise uniformly as the ice melts because this would
generate a new ocean surface which was not an equipotential surface. In
spite of this limitation, however, the variation of the increase of water depth
as a function of time between sites at different geographical locations is not
extreme if attention is focused upon sites which are sufficiently far removed
from the ice sheets themselves. At such sites the oldest beach is inevitably
at the greatest depth below present-day sea level, and the maximum sub-
mergence is on the order of 100 m. In Fig. 20 we show a typical eustatic
sea level curve from Shepard (1963) which is based upon a particularly
extensive RSL record from the Gulf of Mexico. These data extend back to
16 kyr B.P. and show an increase of water depth since that time of something
in excess of 80 m. Compared to Shepard’s data is the eustatic sea level curve
based upon the mass loss history of the deglaciation model ICE-1 tabulated
in Peltier and Andrews (1976).

The ICE-1 deglaciation model was constructed by combining Shepard’s
(1963) eustatic sea level curve with the disintegration isochrone map of
Bryson et al. (1969) for the Laurentide ice sheet and equivalent data for
Fennoscandia. What we did was simplv to partition the total mass loss
implied by Shepard’s curve between the Laurentide and Fennoscandian ice
sheets roughly in proportion to their surface areas on the basis of the as-
sumption that the thickness profile of each ice sheet had the parabolic profile
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FiG. 20. Eustatic sea level curve from Shepard (1963) (dashed) compared to the mass loss
history of the ICE-1 model tabulated by Peltier and Andrews (1976) (solid curve).

which obtains under the assumption of perfectly plastic behavior. Three
time slices through a slightly modified ICE-2 chronology are shown for both
the Laurentide and Fennoscandian complexes in Fig. 21. Most rapid dis-
integration occurs around 12 kyr B.P. as is evident from Shepard’s eustatic
curve shown in Fig. 20. The Laurentide historyv is quite complicated. since
the ice center over Hudson Bay collapses first. leaving high stands of ice
both to the east over Labrador-Ungava and to the northwest. It should be
recognized, however, from the way in which the ICE-1(2) chronology was
constructed. that it is to be considered a first approximation to the actual
history of glacial retreat. It will have to be refined as we refine our knowledge
of the mantle viscosity profile. The iterative process proceeds by fixing
ICE-1 and determining a ““best” #(r). then fixing »(r) and refining ICE-1,
then refining »(r). etc., until convergence is achieved. This method of attack
is feasible onlyv because we have a good a priori estimate of the deglaciation
chronology in the form of the ICE-1 model.

In the following subsections we will discuss the predictions which are
obtained for RSL history when the ICE-1 chronology is inserted into the
sea level equation (4.3). By performing such calculations for several different
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mantle viscosity profiles we will assess the extent to which RSL data may
be employed to constrain this property of the earth’s mantle.

4.3. Output from the RSL Calculation: Global Sea Level Histories

In Fig. 22 we show four time slices through a solution to Eq. (4.3) obtained
for earth model L1 and a deglaciation history which is very similar to the
ICE-1 history of Peltier and Andrews (1976). This new deglaciation history
is called ICE-2 and has been tabulated in Wu and Peltier (1982b), where
the slight differences between it and ICE-1 are also described. It was actually

(e} 80COBP (fl 8000 BP

FIG. 21. Three time slices through the ICE-2 melting chronology tabulated in Wu and Peltier
(1982b). Maps of ice sheet topography are shown for both the Laurentide (a, c, ) and Fen-
noscandia (b. d, f) regions.
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F1G. 22. Four time slices through the solution to the sea level equation for earth model L1
and deglaciation history ICE-2. At each point in the ocean basins the RSL variation is shown
in meters.

constructed through the iterative adjustment process described in the last
subsection. The global maps of the RSL rise S(6. ¢, r) show several important
characteristics. Most obvious is the fact that spatial variations of S(f. ¢, )
are most rapid in the vicinity of the main deglaciation centers, which is
hardly surprising since in this region the function varies from positive values
corresponding to peripheral submergence of the land (rise of sea level) to
large negative values where the land is uplifted. We have not contoured the
negative S(f, ¢, 1) regions which cover the ice centers. since the amplitudes
of emergence are so large that they would completely swamp the sea level
variations in the global ocean in a constant-interval contour representation
of the field. Inspection of Fig. 22 also shows that as uplift takes place in the
once ice covered region a peripheral bulge of water initially propagates
toward the ice centers from the far field. This is due to the corresponding
migration of the peripheral bulge of the solid part of the planet which is
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visible in the disk load response patterns shown in Fig. 17. Also of interest
in Fig. 22 is the fact that the increase of water thickness in the far field of
the ice sheets is not a strong function of spatial position. This demonstrates
a posteriori the internal self-consistency of our use of far-field RSL data to
estimate the integrated mass loss history of the main ice sheets.

Based upon such global RSL solutions. we may divide the surface of the
world’s oceans into a number of different zones, in each of which the RSL
signature has a more or less characteristic form. The zone boundaries ob-
tained from the RSL data in Fig. 22 for the ICE-2 deglaciation history and
the L1 viscoelastic model of the interior are shown in Fig. 23. Zone I consists
of the deglaciated regions in which the RSL record consists of continuous
emergence following disappearance of the ice. Zone 11 is the region periph-
eral to the ice sheet in which all relict beaches are drowned and in which
the record is one of monotonic submergence. The RSL signature at sites
on the boundary between zones I and II turns out to be quite diagnostic
of the viscosity of the deep mantle, as we will show. In this region observed
RSL histories are such that, whereas no raised beaches presently exist, the
initial sense of the vertical motion following melting was of emergence. This
was later followed by submergence, however, so that the RSL histories in
this region are not monotonic. The sea level histories in zone III are char-
acterized by delayed emergence following the end of the deglaciation phase.

27 (F (SR QL{/‘A

FIG. 23. Relative sea level zone boundaries for earth model L1 and deglaciation history ICE-
2. The characteristic signatures of RSL within each of these zones are discussed in the text.
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Figure 23 shows a much broader zone III than that found by Clark et al.
(1978), presumably due to the presence of the lithosphere in our model
which was absent in the previous calculations. Zone IV is a region of present-
day emergence, which in Fig. 23 is seen to consist only of a fairly narrow
region off the west coast of Africa. It is interesting to note that the observed
RSL data along the west coast of Africa (Fauré, 1978) do show just this sort
of transition from a region of submergence to a region of emergence and
then to a region of submergence again in the vicinity of Dakar, Senegal as
shown in Fig. 23. The signature of the RSL data in zone V is the appearance
of a raised beach immediately after melting ceases. For viscoelastic model
L1. Fig. 23 shows a smooth transition between zones III and V in the Pacific,
with no zone IV separating them. Zone VI consists of all continental shore-
lines which are sufficiently remote from the main deglaciation centers. The
RSL histories at sites in such regions are only very weakly dependent upon
the mantle viscosity profile and are characterized by emergence forced by
the offshore water load after melting stops. Such continental shorelines are
on the bulge peripheral to the water load.

It must be kept clearly in mind that although the causes of the charac-
teristic RSL signatures in zones III. V, and VI are somewhat different. the
signatures themselves are really quite similar and it is often difficult in
practice to assign a given site unambiguously to one of these regions. The
utility of the classification of sites employed by Clark et al. (1978) is therefore
not always evident. Nevertheless, the classification does reflect the RSL
behavior as a function of distance from the load which is expected on the
basis of the disk load calculations discussed in Section 3.7 and so should
reflect the interior viscoelastic structure. In the absence of epeirogenic and
tectonic processes, the far-field RSL data would probably be quite diagnostic
of deep mantle viscosity. but unfortunately these sources of geological noise
are important in many localities and the far-field data are not as useful as
one might wish.

4.4. RSL Constraints on the Mantle Viscosity Profile When Initial
Isostatic Equilibrium Is Assumed

We may obtain global solutions to the sea level equation such as that
shown in Fig. 22 for arbitrary profiles of mantle viscosity and from them
obtain predictions from the model of the RSL history to be expected at any
point on the earth’s surface. We seek to vary the profile in such a way as
to obtain a “best fit” to the entire set of RSL data. Although this search
procedure may be automated using the methods of Backus and Gilbert
(1967, 1968, 1970), we have elected to proceed more cautiously at first in
order to convince ourselves that a simple radially stratified model exists
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which is capable of reconciling the majority of the observational data. Just
as we have a priori knowledge of the deglaciation history, so we have a
priori knowledge of the mantle viscosity profile due to the efforts which
have been expended by previous investigators. Among these investigators
there evolved a reasonably well developed consensus that the viscosity of
the upper mantle is near 10*' Pa sec and that the thickness of continental
lithosphere is near 120 km. The approach which we will adopt for purposes
of the discussion in this article is to keep these properties of the viscoelastic
model fixed and to focus our attention upon the question of the extent to
which the rebound data are able to constrain the viscosity of the mantle
beneath 670 km depth; that is. beneath the solid-solid structural phase
transition which occurs there. Since we intend to concentrate the discussion
upon the question of the viscosity of the lower mantle, we shall restrict our
attention to data from sites near the Laurentide ice sheet. The locations of
the sites in zone I from which “C-controlled RSL histories are available
are shown in Fig. 24, whereas sites from zone II are shown in Fig. 25.

In Figs. 26, 27, and 28 we show comparisons of observed RSL data
(hatched regions) with predictions of the gravitationally self-consistent vis-
coelastic model for three mantle viscosity profiles at several of these sites.
The first two viscosity profiles are identical with models 1 and 2 shown on
Fig. 11, whereas the third differs from model 2 only in that the lower mantle
viscosity is 5 X 10?2 Pa sec rather than 10** Pa sec. All three models therefore
differ from one another only in the viscosity beneath 670 km depth, these
viscosities being 10?! Pa sec (10> P), 10 Pa sec (10** P) and 5 X 10** Pa
sec (5 X 10% P) for models 1, 2, and 3, respectively. Comparison of the
model predictions with the observations at sites under the ice shown in Fig.
26 demonstrates that the best fit to the majority of the data is obtained
with the uniform viscosity model 1, since only this model seems able to fit
both the observed amplitude of emergence and the relatively low present-
day emergence rate. The data at most sites show the relatively short relax-
ation time of about 2000 yr, which was stated previously to be characteristic
of most Laurentide locations. The model with lower mantle viscosity of
10?2 Pa sec in general predicts too great a present-day rate of emergence
and too long a characteristic relaxation time. whereas the model with lower
mantle viscosity of 5 X 10** Pa sec fails to predict the total observed emer-
gence and. where it does predict a reasonable present-day emergence rate.
fails even more spectacularly to predict the observed relaxation time. The
only exceptions to this general pattern are at a few sites in the southwest
of Hudson Bay (e.g., Churchill). where some preference for the model with
lower mantle viscosity of 10 Pa sec is indicated.

The comparisons shown in Fig. 27 include sites which are close to the
ice margin (N.W, Newfoundland. Prince Edward Island, Boston). and these
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FiG. 26. Relative sea level curves from six sites in zone 1 near the Laurentide ice sheet. The
hatched regions denote the radiocarbon-controlled RSL observations. The dashed. long-dashed,
and solid curves are theoretical RSL predictions for models in which the lower mantiz viscosity
is 102 P, 102 P. and 5 X 107 P, respectively. The horizontal lines drawn adjacent to the right-

hand margin on each plate indicate the amount of uplift remaining for each of these viscosity
models.
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Fi1G. 27. Relative sea level curves for six sites along the eastern seaboard of North America.
For locations see Figs. 24 and 25. Models and data are represented as in Fig. 26.

strongly reinforce the inference drawn on the basis of RSL comparisons
near the ice sheet center. Models with any substantial increase of viscosity
in the lower mantle fail to match the observations at such locations, since
peripheral bulge migration is strongly inhibited in such models, and this is
required in order to explain the nonmonotonic RSL histories at sites nearest
the boundary between zones I and II (Prince Edward Island, Bay of Fundy.
Boston, etc.).
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FI1G. 28. Relative sea level curves for six sites at increasing distance from the Laurentide ice
sheet. Models and data are represented as in Fig. 26.

Figure 28 and the remaining sites on Fig. 27 show comparisons at several
of the locations along the East Coast of the United States which are shown
on the map in Fig. 23 and at some sites which are considerably more distant
from the center of deglaciation. In general. all viscosity models fail to rec-
oncile the data at East Coast sites, since they generallv predict excessive
submergence (e.g., Southport, Brigantine. Clinton), although the model with
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increased lower mantle viscosity of 10% Pa sec is preferred. Both the uniform
viscosity model and that with lower mantle viscosity of 5 X 10?* Pa sec are
inferior. As discussed in Wu and Peltier (1982b), these misfits could be due
to the operation of some epeirogenic process in this region such as that
associated with offshore sedimentary loading (Newman et al., 1980), or they
could be due to error in the viscoelastic model. As shown in Wu and Peltier
(1982b), it is not possible to remedy these misfits by inserting a low-viscosity
zone into the model. One additional possibility, which turns out to be
correct, is that the misfit could be offset by an increase in lithospheric
thickness. Farther still from the Laurentide ice center in the Gulf of Mexico
(Fig. 28), the uniform viscosity model is again preferred, since both models
with increased lower mantle viscosity predict too little submergence. The
same tendency is observed at Bermuda. The final plates in Fig. 28 illustrate
comparisons at far-field sites in zone VI. These are for Recife, Brazil and
South Island, New Zealand and illustrate the point made previously that
the ICE-1(2) model predicts raised beaches to appear at such sites at 8 kyr
B.P. rather than 6 kyr B.P., at which time they are actually observed. As
suggested in Wu and Peltier (1982b), however, this misfit may be corrected
simply by modifying the deglaciation history slightly to include the tail on
the melt curve which is observed on the*“eustatic™ sea level history of Shepard
(1963) shown previously in Fig, 20. Inspection of this figure shows that the
ICE-1(2) histories are characterized by an abrupt cessation of melting at 5
kyr B.P. If the final disappearance of the Northern Hemisphere sheets were
delayed somewhat from that assumed in ICE-1(2) or if some other source
of meltwater were still active in the time subsequent to 5 kyr B.P. (such as
West Antarctica, for example), then this misfit could be simply corrected.

With the few exceptions mentioned above, the RSL data from the Lau-
rentide region quite strongly prefer the uniform viscosity model over models
which have high lower mantle viscosity. As we will show in the following
two sections of this article, this is a conclusion which is further reinforced
when other data associated with isostatic adjustment are considered. The
first such additional kind of information we will discuss is that contained
in the variation of the surface gravitational acceleration over deglaciation
centers.

5. DEGLACIATION-INDUCED PERTURBATIONS OF THE
GRAVITATIONAL FIELD

As mentioned in the introduction to this article. the apparent inability
of previously constructed linear viscoelastic models of isostatic adjustment
to simultaneously explain both RSL and free-air gravity data has led to
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suggestions to the effect that the basic rheological constitutive relation on
which such models are predicated could be completely in error. In this
section we will show that when the new theory of glacial isostatic adjustment
developed in Sections 3 and 4 is employed to predict the free-air gravity
anomaly which should be observed over Hudson Bay, then we obtain agree-
ment with the observed anomaly for the same mantle viscosity profile which
is required to fit the RSL data. We are therefore able to fully resolve an
important question which has remained unanswered in the literature, and
at the same time to seriously undercut previous objections to the use of
linear viscoelastic models and to the inference obtained from them that the
viscosity of the mantle is rather uniform. The ability of the new theoretical
model to solve the problem is due to the fact that it includes the complete
spectrum of normal modes of viscous gravitational relaxation which is sup-
ported by the radial elastic structure of realistic earth models. As discussed
in Section 3.6. the model with uniform mantle viscosity which so well
explains the observed record of sea level variations during the past 20.000
yr. a record which is dominated by rather short relaxation times, also sup-
ports normal modes with long relaxation times due to the internal density
jumps which are associated with the presence of solid—solid phase transitions
at the base of the upper mantle. Although the sea level record is dominated
bv the shortest relaxation times in the complete spectrum. the free-air gravity
anomaly depends critically upon the extent to which the modes with long
relaxation time are excited. Because the relaxation spectrum of realistic
viscoelastic earth models contains modes with relaxation times on the order
of 10° yr, and since this time scale is of the same order as the time between
successive interglacials (Broecker and Van Donk, 1970). we must also con-
sider the validity of the assumption of initial isostatic equilibrium on the
basis of which the previously described calculations of RSL history were
performed. Before addressing these questions we will first describe the free-
air gravity observations over the main centers of postglacial rebound.

5.1. Satellite and Surface Observations of the Gravity Field over
Deglaciation Centers

In Fig. 29 we have reproduced a global map of geoidal heights based
upon the GEM 10 data set and the spherical harmonic coefficients of degrees
2-22. This map represents mean sea level over the world’s oceans. while
over the continents the geoidal heights are those which would obtain if the
continents were cut by a web of thin canals. The anomalies shown on this
map are those referred to a reference sphere and are based almost entirely
upon satellite observations, although some terrestrial data have also been
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FiG. 29. Global map of geoidal heights based upon the GEM 10 data set and spherical
harmonic coefficients of degrees 2-22.

included. Inspection of this map reveals the presence of a global pattern of
anomalies with scales on the order of thousands of kilometers and ampli-
tudes varying from —105 m over the Indian Ocean to +70 m over the
southwest Pacific. Of particular interest to us for present purposes is the
anomaly of —44 m over Hudson Bay. Although this anomaly is very well
correlated with the previously shown map of Laurentide ice topography
(Fig. 21), and is therefore most probably associated with deglacial forcing,
when we seek a similar feature over Fennoscandia (top left-hand corner of
the map) we find no negative anomaly present at all. The difficulty clearly
has to do with the fact that the magnitude of the anomalies associated with
deglaciation are on the same order as those associated with mantle con-
vective processes. It might well be, as pointed out in Peltier (1980a) and
previous papers, that the isostatic adjustment model can be used as a filter
to remove from the global map of geoidal heights the anomalies which are
known to have a deglacial cause and thereby to reveal more clearly the
convection-related patterns. Before we can carry out this global filtering,
however, we have to convince ourselves of the ability of the isostatic ad-
justment model to correctly predict the amplitude and form of the anomalies
over the glaciation centers. In order to do this we will have to consider the
more accurate representation of these anomalies which is obtained from
surface data.

In Fig. 30 we show in parts a and b the free-air gravity anomaly maps
constructed by Walcott (1970) and Balling (1980) for the Laurentide and
Fennoscandia regions. respectively. The map for Laurentide is based on the
surface data of Innes et al. (1968), which were averaged on 1° X 2° grid
elements to remove the influence of local topographic variations and near-
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F1G. 30. Free-air gravity anomaly maps for the Laurentide (a) and Fennoscandia (b) regions.
The contours are in mGal. Data sources are discussed in the text.

surface geological structure. Each of the grid elements typically contained
about 100 separate observations over land and 40 observations over water
(Hudson Bay). Inspection of Fig. 30a shows that the anomalous structure
which remains consists of an elongated elliptical trough trending roughly
NW with a peak amplitude near —35 mGal. Walcott (1972) has previously
cautioned that since the Hudson Bay is itself a Phanerozoic basin, the
anomaly actually associated with current glacial disequilibrium could be as
much as 10 mGal more negative than shown in Fig. 30a. This must be
considered somewhat speculative, however, and for the purposes of the
following discussion we will generally assume that the anomaly to be fit by
the isostatic adjustment model has its —30 mGal contour surrounding Hud-
son Bay.

Interpretation of the gravity field over Fennoscandia is considerably more
complicated than it is for the Laurentide region, because of the combined
effects of topography and local near-surface geology on the same spatial
scale as that of the ice sheet itself and because the feature related to degla-
ciation seems also to be biased by the local long-wavelength background.
The analysis of this field by Balling (1980) is the most careful which is
presently available and is based upon the raw data of Honkasolo (1963).
By direct regression analysis, Balling removed from the raw anomalies the
spatial part which was linearly related to the topography to obtain the re-
sidual map shown in Fig. 30b, which reveals a peak anomaly somewhat in
excess of —10 mGal which is very well correlated with the topography of
Fennoscandian ice illustrated previously in Fig. 21. The analysis provided
by Balling suggests that this anomaly has been biased by +5 to +10 mGal
due to the large-scale variations. and he concludes that the anomaly rep-
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resentative of the current degree of isostatic disequilibrium is between —15
and —20 mGal. Walcott (1972) accepts an estimate of —17 mGal for the
magnitude of the anomaly related to deglaciation, and we will take this as
the observed peak anomaly which our isostatic adjustment model must be
expected to reproduce.

In the following subsection we will begin to test this model in terms of
disk load approximations to the actual deglaciation chronologies.

5.2. Disk Load Approximations and the Effect of Initial
Isostatic Disequilibrium

Just as disk load approximations to the actual deglaciation histories were
applied in Section 3.6 to compute approximations to the RSL data in the
form of histories of radial displacement, so here we will make use of the
same methods to estimate the gravity anomalies to be expected from the
more realistic calculations. Free-air gravity signals may be computed in
exactly the same way as we previously computed radial displacement, the
sole difference being that we employ the Green’s function for the free-air
anomaly given in Eq. (3.39). Convolution of this Green’s function over a
circular disk with parabolic height profile which approximates the Lauren-
tide ice sheet produces the response shown in Fig. 31 when the impulse

80 T T

Free-Air Anomaly (mGal)

-160 . 4
| 10 100

8{degrees)
F1G. 31. Free-air gravity anomaly as a function of time forced by a parabolic disk load
approximation to the Laurentide ice sheet which is applied instantaneously at ¢ = 0. The times
are ( yi=dkyn(---)t=8kwni(--=-)r=12kwrn(---) 1= x kyr.




80 RICHARD PELTIER

TaBLE IVa. Ag FOR LAURENTIDE AND VISCOSITY MODEL L1

Ag: Equilibrated Ag: Nonequilibrium
Time Ag: Load added load removed at load removed at
(kvr) att =0 (mGal) t =0 (mGal) t = 0 (mGal)
0 0 =127 —99
4 —84 —43 —-29
8 -98 =29 -16
12 -100 =27 —14
16 —127 -27 —-14
x —127 0 0

response function used 1s that for viscosity model L1. This figure shows the
time-dependent anomaly which would exist if the planet were initially in
equilibrium and the load applied at ¢ = 0; clearly the gravity anomaly
reaches a maximum in the limit of infinite time. In order to obtain the
anomaly which would be observed if the load were removed instantaneously,
afier having been resident on the surface for infinite time, we need only
subtract from the results shown on Fig. 31 the infinite-time anomaly itself.
The importance of having accurate calculations of the isostatic asymptotes
of the Love number spectra (as discussed in Section 3.4) for the free-air
gravity calculations should therefore be clear. Some numerical results for
the time dependence of the peak anomaly produced by the Laurentide disk
load are tabulated in Tables IVa and IVb for models L1 and L2 respectively.
Since the phase of most rapid deglaciation occurs at about 12 kvr B.P.
according to Shepard’s eustatic curve (Fig. 20). inspection of this table shows
that model L1 predicts the present-day anomaly reasonably well (=27 mGal)
when initial isostatic equilibrium of the loaded surface is assumed. Model
L2, however, the corresponding results for which are shown in Table IVb.
predicts a present-dayv free-air anomaly of —64 mGal. which is so much
larger than the observed anomalv of about —30 mGal (Fig. 30a) that the
model must be completely rejected.

TABLE IVb. Az FOR LAURENTIDE AND VISCOSITY MODEL L2

Ag: Equilibrated Ag: Nonequilibnium

Time Ag: Load added load removed at load removed at
(kyr) at tr = 0 (mGal) t =0 (mGal) t =0 (mGal)

0 0 —127 —86

4 =33 —94 —65

8 =51 =76 —-53

12 —63 —-64 —43

16 =71 —56 -36

H

-127 0 0
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FIG. 32. (a) Oxygen isotope stratigraphy from a typical deep-sea sedimentary core showing
the ratio '*0/"*0 as a function of time and the implied variation of continental ice volume.
(b) A sawtooth approximation to this time series which accentuates the 10°-yr periodicity in
the record of ice volume fluctuations and the large discrepancy between the time scales of
accumulation and disintegration.

These initial results serve to demonstrate that the free-air gravity anomaly
expected for the uniform mantle viscosity model is very much larger than
that predicted by previous viscoelastic theories of glacial isostasy. The reason
for this was previously explained as being due to the fact that realistic
viscoelastic models of the planet support modes of relaxation with much
longer time scales than previously recognized. On the basis of the above
comparisons of the predictions of models L1 and L2 it also seems quite
likely that the observed free-air gravity anomaly over the Laurentide region
will prove to be even more diagnostic of the viscosity of the deep mantle
than the RSL data themselves. In order to make full use of this datum,
however, we are forced to address the question of the validity of the as-
sumption of initial isostatic equilibrium upon which the above-described
disk load calculations were based.

In order to assess the validity of the assumption. however. we require
direct information concerning the actual time scale of the glaciation cycle.
It is fortunate for our purposes that such information has been recently
forthcoming from studies of deep-sea sedimentary cores taken in the major
ocean basins during the course of the Deep Sea Drilling Project (DSDP).
The data of interest here are measurements of the ratio of the concentrations
of the stable isotopes of oxygen ('*0/'*0) as a function of depth in such
cores. Although it was originallv believed (Emiliani. 1955) that the vari-
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ability of this ratio was a direct reflection of Pleistocene temperatures, it
was subsequently established (Imbrie and Kipp, 1971) that the isotopic ratio
for the most part reflected the variation of Northern Hemisphere ice volume.
Broecker and Van Donk (1970) were among the first to establish on the
basis of these data that the Northern Hemisphere glacial-deglacial cycle is
very nearly periodic with a time scale of approximately 10° yr. Kukla et al.
(1981) have most recently reviewed the characteristic signature of ice sheet
growth and disintegration which defines each cycle. This signature, which
is also discussed in somewhat greater detail in Hays et al. (1976), is char-
acterized by a very slow buildup of the major ice sheets over about 10° yr
followed by an extremely rapid disintegration. This suggests that a reason-
ably good approximation to the long time scale ice volume fluctuations
would be the sawtooth waveform shown in Fig. 32b which i1s compared to
the '*0/'O record in Fig. 32a. Given this information on the previous
history of loading and unloading of the Laurentide and Fennoscandia re-
gions (there does not appear to have been any significant geographical mi-
gration of successive ice center locations) we may proceed to address the
question of the importance of initial disequilibrium upon the inference of
deep mantle viscosity from isostatic adjustment data.

As shown in Section 3. all of the viscoelastic impulse response Green’s

functions may be written in the form
w M

G0, t) = GE0) 8(t) + Z 2 rle~Py(cos ) (5.1)

1=0 j=1
where [ is spherical harmonic degree, l,fsj is the relaxation time for the jth
mode of the /th harmonic, and r! is the initial “viscous” amplitude. If we
denote by L(f. ¢) the load at location @ and time ¢ then the response at time
t is just
[
u(d. r) = f G(t—t"Yy* L(t") dt' (5.2)

where the * denotes spatial convolution over the loaded surface. Suppose
that at ¢ = O the load at location  is /p(#), whereas for ¢ < 0 the “prehistory”
of loading is Ly(0, ), and for ¢ > 0 until the present time the loading history
may be represented by /1, + A(8, 1), i.e.

L(8. 1) = Ly(#, 1), t<0 (5.3)

= hy + h(d, 1), t=0

with Ly(6, 0) = hg(#) and A(8, 0) = 0. For t > 0 we may therefore expand
Eq. (5.2) as

0 r
(8. !}=J. G{r—:’)*Lp(z')dr’+f Gt —1t)* hydt’
—eor 0

+ jI Gt —t'y = h(t") dt’ (5.4)
)]
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Now the second term on the right-hand side of Eq. (5.4) may be identified
with the spatial convolution of the Heaviside form of the Green’s function
with the initial surface load Ay * G"(¢). The third term, on the other hand,
is the response to the deglaciation phase of the load cycle. This term would
be equal to —hg # G"(z) if all the load were removed instantaneously. The
first term on the right-hand side of Eq. (5.4) is the response due to the
history of loading prior to ¢ = 0. Using Eq. (5.2) it may be rewritten as (Wu
and Peltier, 1982a)

0 x M 1
J. Gt —t)yx Lthdt'=2 2 Fl(0) f": et (5.5)
- 1=0 j=1 §;
where
0
Fl= f Py * Ly(t')sle" dt’ (5.6)

Equation (5.6) may be considerably simplified if each location under the
load has the same prehistory, since we may then write

L0, 1) = ho(0),(1)
in which case Eq. (5.5) is replaced by

0 rl
f Gt —t)+ Lt dt'=ho* 22 2 fjs—’, ep, (5.7)
i 1 j
where .
fi= J. sj—e’:"hp(r’) dt’ (5.8)
For such a simple model, the functions f! contain all of the information
concerning the prehistory of loading. If the ice sheet had remained on the
surface for an infinite length of time prior to melting so that the system
was in isostatic equilibrium at 7 = 0, then /1,(t) = H(t — ¢.,), where H is the
Heaviside step function. With 1, = —oc it follows from Eq. (5.8) that
f'= 1, and the total response may be written from Eq. (5.4) as

! T
W) =hyx 2 2 Z—i ‘sj’P; + ho * GP(1) + J. G(t—t"Y* h(thdr' (5.9)
L 0

3
Using :
GHO.0 =GO+ 2 T 2 (1 - e P,
t S
Eq. (5.9) may be rewritten as

/ '
) =ho* 2 2 %Pf +f G(t —t") = h(t') dt’ (5.10)
t 5 = 1]
or
il(0) = ho *» GP(1 = x)+f Gt —t")y = h(t") dt’ (5.11)
0
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which shows that the isostatic response to the removal of an equilibrium
load at ¢ = 0 may be expressed as the sum of the infinite-time (initial)
response and that forced subsequently. If the compensated load were re-
moved instantaneously at ¢t = 0 then the response for ¢ > 0 from Eq. (5.11)
would be

u(t) = hy * Gt = ) — hy * GH(2) (5.12)

This is the expression which was used to compute the gravity anomalies
shown in column 3 of Tables IVa and IVb under the assumption that
isostatic equilibrium prevails initially.

In order to assess the effect of initial disequilibrium, we may use the
general expression (5.4). which gives

i i |
uty=hox 2 2 f}iﬁ e P+ by x GY(1) + f Git—t)*h(t)dt' (5.13)
T | J 0

which may be rewritten in the form
w(t) = 1) — hy * E(1) (5.14)

where E is the error or correction Green’s function
[
»
Ee.np=2 2 ( -fj)5—;e—%’fp, (5.15)
I J

The total response in Eq. (5.14) may therefore be expressed as the sum of
the response which would be observed if the load were initially in equilib-
rium [7(1)] and a correction due to the load prehistory which is expressed
as the spatial convolution of the initial load over an “error” Green’s
function.

In order to determine E(f, ¢) we need the f/ which are defined in Eq. (5.8)
in terms of the prehistory of loading /(). For the sawtooth prehistory shown
in Fig. 32b this function is given by

+
hgy=" T"”, —kr<t<—(k— 1) (5.16)

where + = 10% yr in the characteristic period of a single ice sheet advance.
Substitution of Eq. (5.16) into Eq. (5.8) gives

i ={k=1)r
e 3 [ e
:

s

. 1=s7Y1 - NS S
B (e v 5"-1'J ) 1 — e (R
J

where N is the number of load cvcles in the prehistory. Since the present
ice age has continued for 2-3 million yr, a time short compared to the
continental drift time scale of 10® yr on which significant changes of polar
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FI1G. 33. (a) Present-day peak free-air gravity anomaly at the center of the disk model Lau-
rentide load as a function of the viscosity of the mantle beneath 670 km depth. The viscosity
of the upper mantle is held fixed at 10~ P. The dash-dotted curve is the prediction assuming
initial isostatic equilibrium; the dashed curve includes the effect of initial isostatic disequilib-
rium but the computation has been done for fixed ice sheet radius. The solid curve is the
predicted anomaly when the time dependence of ice sheet radius is accounted for under the
assumption that the ice cap maintains an equilibrium plastic profile at all times. The hatched
region shows the observed peak anomaly over Hudson Bay. (b) Precisely the same analysis for
the Fennoscandia region.

continentality can be expected to have occurred, vet long compared to
the-duration of a given glacial epoch (10° yr), we may safely assume

= 20-30 in evaluating Eq. (3.7). We note from the form of Eq. (5.17)
that if str is large, which is to say that the characteristic relaxation time is
short compared to the time scale of ice sheet advance. then fi ~ 1 and the
mode (j, /) is very nearly in isostatic equilibrium at ¢ = 0. If sir =~ 1 then
fi~ 0.58, provided N > 2, and the response in this mode would be just
that for a reduced load 0.58%4,(f) which was initially in equilibrium. If,
however, f\'s_;r < 1then fl = Nsi7/2 and by ¢ = 0 the response is but a small
fraction of the equilibrium value.

In column 4 of Tables IVa and IVb we show the peak free-air gravity
anomaly at the center of the model Laurentide disk as a function of time
for models L1 and L2 including sawtooth prehistory with 7 10° yr and

= 30 (N = 20 gives almost identical results). Comparing columns 3 and
4 shows that the correction for prehistory at ¢ = 12 kyr is about 13 mGal
for L1 and 27 mGal for L2. The calculations therefore demonstrate that
the effect of initial isostatic disequilibrium is extremely important insofar
as free-air gravity anomaly calculations are concerned. In Fig. 33a we present
the results of a more detailed investigation of the effect of initial disequi-
librium on the free-air gravity anomaly to be expected over Hudson Bay.

GRAVITY ANOMALY (macal)
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This diagram shows the present-day peak free-air gravity anomaly at the
center of the Laurentide model disk load as a function of the viscosity of
the mantle beneath 670 km depth. The prediction is shown both including
and excluding the effect of prehistory and is compared to the observed free-
air anomaly of about —35 mGal (hatched region). Inspection of this figure
shows that when initial isostatic equilibrium is assumed, the model with
uniform mantle viscosity of 107 P fits the observed free-air anomaly very
well. Under this assumption, as the viscosity of the lower mantle increases
the predicted free-air anomaly increases monotonically to approach an
asymptotic value near 100 mGal. If the assumption of initial equilibrium
were valid, therefore, the viscosity of the lower mantle could not be signif-
icantly in excess of the upper mantle value. Otherwise one would predict
a free-air anomaly much larger than is observed.

Even with a lower mantle viscosity as high as 10** P as in model L2,
however, characteristic relaxation times are no longer short compared to
the time scale of 10° yr which separates successive interglacials and the
assumption of initial isostatic equilibrium is invalid. The second and third
curves on Fig. 33a show the predicted present-day free-air gravity anomaly
for the model Laurentide load including the influence of initial isostatic
disequilibrium. In this case the predicted anomaly is not a monotonically
increasing function of the deep mantle viscositv. Rather we may fit the
observation for either of two widely spaced values of lower mantle viscosity,
one near 3 X 10”2 P and the other near 5 X 10*° P. The latter exists as a
possible solution because. in the theoretical model, one may trade off the
degree of initial disequilibrium against the magnitude of the viscosity in the
lower mantle. To the extent that RSL data are relatively unaffected by initial
isostatic disequilibrium. however, this solution may be completely ruled out
on the basis of the preceding discussion of RSL data in Section 4. and the
only acceptable solution is the lower value.

It is an extremely important property of the isostatic adjustment data set
that RSL data and free-air gravity data complement each other in this way.
The explanation of the complementary nature of these two types of data
is to be found in the fact that sea level histories are effectively measurements
of radial displacement relative to the zero datum established by local pres-
ent-day mean sea level. These data therefore provide no information con-
cerning the amount of uplift (submergence) which has vet to take place
before isostatic equilibrium is restored. The free-air gravity anomaly. on the
other hand. i1s an absolute measurement of the degree of current disequi-
librium, and it is for this reason that the two types of observation are
influenced to a completely different extent by initial isostatic disequilibrium.
This may be shown algebraically by using Eq. (5.14) to compute

u(r) — ulty) = a(r) — 1(ty) — ho = [E(1) — E(1,)] (5.18)
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F1G. 34. Radial displacement response at the center of the Laurentide model disk load for
viscoelastic models L1 and L2. The solid curves are for calculations done under the assumption
of initial isostatic equilibrium, whereas the dashed curves include the degree of initial dis-
equilibrium implied by the oxygen isotope data. Also shown on this figure are data from three
sites around Hudson Bay: (A) data from Castle Island: (@) data from Churchill; (W) data from
the Ottawa Islands.

where 1, is the present time, so that Eq. (5.18) gives the response relative
to a zero datum at present and therefore correctly mimics RSL information.
The correction of the relative displacement response for the effect of initial
disequilibrium is given by the third term on the right-hand side of Eq. (5.18)
in the form of a convolution of the initial load over a difference of error
Green’s functions. From Eq. (5.15) the expression in square brackets in Eq.
(5.18) is

w M !
E)—Et)=2 3 (1—-fHyded1 —elonp (519

=0 j=1 5;
which is obviously zero for ¢ = ,. Comparison of Eq. (5.19) with Eq. (5.15)
shows that every term in Eq. (5.19) is smaller than the corresponding term
in Eq. (5.135) by the factor {1 — exp[—s/(z, — #)]}. The magnitude of the
effect is shown in Fig. 34, where we plot the relative radial displacement
response at the center of the Laurentide disk for models L1 and L2 both
including and excluding the effect of initial isostatic disequilibrium (solid
and dashed lines respectively). Inspection of this figure clearly shows that
the effects of initial disequilibrium upon the predictions of either viscosity
model are much less than the differences in response due the viscosity
models themselves. This is an extremely impor.ant point since it assures
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us that viscosity models rejected on the basis of RSL calculations done
assuming initial isostatic equilibrium cannot be brought back into conten-
tion by invoking this effect. Also shown on Fig. 34 are the RSL data from
the Ottawa Islands in Hudson Bay and from two other sites near the center
of rebound. These data all lie between the predictions of models L1 and
L2. implying that the lower mantle viscosity is between that in these two
models. This is the same conclusion reached on the basis of the previously
discussed free-air gravity data which prefer a value of the lower mantle
viscosity near 3 X 10*' Pa sec.

Figure 33b shows a comparison of disk load predictions of the peak free-
air gravity anomaly, with and without the effect of initial disequilibrium,
for the model Fennoscandian load. Inspection of this figure confirms the
conclusions reached on the basis of the Laurentide analysis. When the effect
of initial isostatic disequilibrium is included, the model with lower mantle
viscosity of about 2 X 10** P predicts the observed present-day free-air
anomaly of about —17 mGal quite accurately. The fact that both the Lau-
rentide and Fennoscandia data require the same contrast of viscosity across
the phase transition at 670 km depth in the mantle strongly reinforces the
necessity of including this feature in the viscosity profile, establishes the
feature as a global property of the real earth, and reinforces our “faith” in
the assumptions upon which our realistic viscoelastic models of the earth
are based.

The model which we have emploved here to investigate the influence of
initial isostatic disequilibrium upon free-air gravity and RSL predictions
assumes, through the expression L(f. f) = ho(8)/1,(1), that the ice sheet radius
remains constant while its volume expands and contracts. This is of course
not strictly true, since ice sheets expand and contract in their horizontal
dimensions as volume increases and decreases. As discussed in Wu and
Peltier (1982b), however. when one uses the flow law of ice to fix the vari-
ations of ice sheet scale given the characteristic volume fluctuations shown
in Fig. 32b. one finds that the assumption of fixed ice sheet radius actually
tends to exaggerate somewhat the importance of initial isostatic disequilib-
rium. This reference should be consulted for a more detailed analvsis of this
effect. In Fig. 33a.b calculations of the peak free-air anomalies at the center
of the Laurentide and Fennoscandia disks are also shown which include the
influence of expansion and contraction of the disk radius and which dem-
onstrate this effect.

3.3. Free-Air Anomalies from the Self-consistent Model
Figure 35a.b shows free-air gravity maps for the Laurentide region pre-

dicted from the gravitationally self-consistent theory for viscoelastic models
L1 and L2. respectively. All of these calculations have been done under the
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FI1G. 35. Predicted present-day free-air gravity maps for the Laurentide region. Parts (a) and
(b) are calculations based upon viscoelastic models L1 and L2, respectively. Both calculations
assume that isostatic equilibrium prevails initially.

assumption that isostatic equilibrium prevails initially, and comparison of
the peak anomalies on these maps with the corresponding disk load pre-
dictions in Fig. 33a shows that the disk load approximations are extremely
accurate. Therefore, none of the arguments based upon the disk load anal-
yses will require substantial modification in consequence of application of
this more accurate model to calculation of free-air gravity anomalies. As
discussed in Wu and Peltier (1982b), this general conclusion also applies
when the effect of initial isostatic disequilibrium is included. The fact
that the free-air gravity anomalies predicted by the new theory did fit
the observations over the Laurentide region was first demonstrated in Peltier
(1981a).

5.4. Gravity Field Constraints on the Mantle Viscosity Profile

The few results discussed in the preceding subsections suffice to make the
important point that the new theory of isostatic adjustment is able to si-
multaneously explain both observed RSL histories and free-air gravity
anomalies associated with the main centers of Pleistocene deglaciation. No
previous analysis of postglacial rebound has achieved this rather important
goal. The fact that our realistic linear viscoelastic models are able to reconcile
both data sets simultaneously means that there is no evidence in the ad-
Justment data themselves for non-Newtonian or other exotic material be-
havior. The crucial ingredient which was missing in all previous formula-
tions of the theory is the set of modes with long relaxation times which is
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supported by the radial inhomogeneity of the elastic structure of realistic
earth models. Of particular importance in this respect are the density jumps
in the transition region due to the olivine — spinel and the spinel — pe-
rovskite + magnesiowustite phase transitions. With the elastic structure
fixed to that of model 1066B of Gilbert and Dziewonski (1975), which was
itself based upon the totality of elastic gravitational free oscillations data,
our isostatic adjustment calculations show that the free-air gravity anomaly
is a particularly sensitive measure of the viscosity of the lower mantle. When
the upper mantle viscosity is fixed to 10*' Pa sec the free-air data require
a lower mantle viscosity very near 3 X 10%!' Pa sec, with the Laurentide data
apparently providing the most sensitive estimate of this number. The RSL
calculations discussed in Section 4 show that this viscosity profile is com-
pletely acceptable to the RSL data. In the next section we will go on to
consider a third set of isostatic adjustment data which are able to provide
an extremely useful further corroboration of the validity of this inferred
viscosity profile.

6. DEGLACIATION-INDUCED PERTURBATIONS OF PLANETARY ROTATION

Given the mass contained in the Laurentian and Fennoscandian ice com-
plexes it should not be too surprising that their melting may have induced
very substantial variations in the moment of inertia tensor of the planet.
Since the net angular momentum of the solid earth + ice + water system
must be conserved during the internal mass redistributions associated with
glaciation and deglaciation, it is clear that the changes of the inertia tensor
produced by mass redistribution must be accompanied by changes in the
angular velocity vector of the system as a whole. As we will show in the
following subsections these changes in the angular velocity vector are as-
tronomical observables which may be invoked to constrain the mantle vis-
cosity profile since the history of surface loading is known.

6.1. The Historical Records of Polar Motion and l.o.d. Variation

Since about A.D. 1900 the International Latitude Service (ILS) and more
recently the International Polar Motion Service (IPMS) have maintained
a set of photo zenith tube (pzt) stations which have provided a more or less
continuous record of the monthly mean motion of the rotation pole relative
to the conventional international origin (CIO). These polar motion data are
shown in Fig. 36, which is based upon the reduction of ILS data by Vincente
and Yumi (1969, 1970) as described in Dickman (1977). The upper and
lower time series, respectively, show the polar motion along the y and x
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F1G. 36. Polar motion time series for the motion of the rotation pole in the x and y coordinate
directions relative to the CIO. The geographic orientation of the coordinate system is shown
on the inset polar projection which also shows the location of the Wurm-Wisconsin ice sheets
(stippled) at the last glacial maximum. The arrow drawn from the CIO shows the direction
of the drift of the rotation pole implied by the secular trend in the ILS pole path which is
evident in both the x and y coordinate directions. The rate of drift is about 1°/10° yr.

axes of the CIO coordinates, and the geographic location of these axes is
shown on the polar projection at the center of the figure. The x axis passes
along the Greenwich meridian. and the ) axis along the meridian at long
90° W. Inspection of the polar motion time series shown in this figure shows
it to be dominated by a sequence of beats separated by a period of 7 yr.
This is precisely the temporal behavior which is expected due to the su-
perposition of the 14-month free Eulerian nutation (Chandler wobble) and
the 12-month annual wobble. These oscillatory motions are superimposed,



92 RICHARD PELTIER

however, upon a secular drift of the pole with respect to the coordinate
system fixed relative to the surface geography. The direction of the mean
motion of the pole is shown by the arrow drawn from the center of the CIO
system on the polar projection in the center of Fig. 36. That it is directed
toward the centroid of the ancient Laurentide ice sheet should make us
suspicious that the drift is deglaciation induced. As we will show, this sus-
picion turns out to be warranted. Given the rather large difference between
the mass of the Laurentian and Fennoscandian ice sheets it should hardly
be surprising that the Fennoscandian load, which is of smaller mass and
centered at higher latitude, does not significantly influence the response.
The observed rate at which the rotation pole is drifting toward Hudson Bay
is very near 1°/10° yr, and this is the observation which we will attempt
to fit with our isostatic adjustment model.

Of equal interest to the above-described mean motion of the pole for our
present purposes are historical observations of variations of the length of
day (l.o.d.). It is well known that the rotation of the earth is generally
decreasing with time at a rate of (1100 + 100)"/century® (e.g., Lambeck,
1980), due mostly to the torque exerted on the earth by the moon through
the agency of lunar ocean tidal dissipation. In order to ensure conservation
of angular momentum of the earth—-moon system this decrease in the rate
of the earth’s rotation is accompanied by an increase of the earth-moon
distance. Although it is now understood that the current rate of lunar tidal
dissipation is anomalously high and unrepresentative of the past because
the ocean basins are currently almost resonant with the tidal forcing (Han-
sen, 1982), the l.o.d. variation forced by lunar tidal friction certainly dom-
inates the observed vanation of this quantity now. Besides the L.o.d. change
forced by tidal torque, it has been possible to extract from the astronomical
record a component of the net L.o.d. change which is not attributable to
this cause. This observation is normally referred to as the nontidal accel-
eration of rotation and has been measured using various methods to obtain
the results listed in Table V. The observation by Currot (1966) is consistent
with that of Dicke (1966) and 1s based upon an analysis of ancient solar
eclipse data. Based upon an assumption of constant lunar tidal acceleration,
one may predict from the orbital equations when each of the ancient solar
eclipses should have occurred. Knowledge of when they actuallv occurred
provides a measure of the deceleration of rotation which is not attributable
to the operation of tidal torques. Miiller and Stephenson (1975) reanalyzed
the ancient eclipse data analyzed by Newton (1972), keeping only the ob-
servations corresponding to total eclipses or for which the deviation from
totality was explicitly declared. The measurement in the table by Morrison
(1973) was based upon observed lunar occultations over the time period
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TABLE V. MEASUREMENTS OF THE NONTIDAL COMPONENT OF THE
ACCELERATION OF ROTATION

Source Value (w3/Q)
Currot (1966) (0.7 £03)x 107" yr!
Miiller and Stephensson (1975) (1.5 £0.3) X 1070 yr!
Morrison (1973) (29 +0.6) x 10710 yr!
Lambeck (1977) (0.69 + 0.3) X 1070 yr!

1663-1972. It differs significantly from the others. Lambecks’s (1977) num-
ber was obtained from the difference between the value of the net accel-
eration given by Miiller (1975) and the mean value for the tidal acceleration
obtained from an ocean model and astronomical and satellite observations.

In the following subsections we will show that both the secular drift of
the ILS-IPMS pole path and the nontidal acceleration of the earth’s rotation
are effects due to Pleistocene deglaciation. We will furthermore demonstrate
that these observations may be employed to constrain the viscosity of the
earth’s mantle and thus to provide valuable confirmation of the validity of
the profile of viscosity deduced on the basis of the previously discussed
analyses of RSL and free-air gravity data.

6.2. The Theory of Deglaciation-Forced Rotational Effects

If the earth is subject to no external torque, then the principle of angular
momentum conservation takes the form of the following Euler equations
(e.g., Goldstein, 1980): r

7 (Jijwy) + e Jye; = 0 (6.1)
where the angular velocity w is referred to a coordinate system whose axes
coincide with the initial direction of the principal axes of inertia of the
deformable body with moment of inertia tensor J;;. In Eq. (6.1) € is the
Levi-Civita alternating tensor. If we can determine the J;;(¢) which are
produced by the Pleistocene glacial cvcle. then Eq. (6.1) could be solved for
the unknown w; since they would then degenerate to a set of three simul-
taneous ordinary differential equations. In fact, the inertia tensor J; contains
contributions from two sources which are of interest to us here due, re-
spectively. to the effect of the deformation produced by the basic rotation
and that associated with the response of the planet to surface loading by
the ice sheets. We will proceed to calculate these distinct contributions.
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6.2.1. Perturbations of Inertia Due to Variable Rotation. In order to
compute the rotational deformation we will employ the formalism of tidal
Love numbers in combination with MacCullagh’s formula as described in
Jeffreys (1970). If the earth is subjected to a disturbing potential of the form

$a(r, 5) = 2. a2 y(r, 5)P/(cos 0) (6.2)
=0

where s is the Laplace transform variable, r is the distance from the center
of mass. and P, is the usual Legendre polynomial, this potential will elicit
a response ¢,(r. s) such that

d(r, 8) = Day(r, K (1, 5) (6.3)

where k] is the so-called tidal Love number, which differs from.our pre-
viously defined load Love number A/(r, ) in that it is computed for zero
normal stress boundary conditions. If the applied potential is the centrifugal
potential ¢ associated with rotation then

Y = %[@‘2"2 = ("’:’xr')zl (6.4)
which can be split into two terms (e.g., Munk and MacDonald, 1960) as
Y =wr?+x (6.5)
where
X = é[“ﬁ(\% +X3-2XP)+ e = 6w, wX,.X2) (6.6)

is a spherical harmonic of degree two and where the dots denote additional
terms obtained by cyclic permutation of the indices. The external gravita-
tional potential I produced by this contribution to the centrifugal potential
is, from Eq. (6.3),

V= (a/r)’x(t) * k3(1) (6.7)

where the * denotes convolution in time. Now the tidal Love number
kT(r) may be obtained from the equivalent time-independent expression for
an elastic earth by direct application of the principle of correspondence. For
an incompressible, homogeneous earth the elastic tidal Love number (e.g.,
Munk and MacDonald. 1960) is

3/2

B =ae—
l+p

[prp)

(6.8)

where i = 19u/2pga, with u the elastic shear modulus. p the density. a the
earth radius. and g the surface gravitational acceleration. For the Maxwell
earth the Laplace transform domain expression for the elastic shear modulus
(see Section 2) is
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u(s) = - (6.9)
The Laplace inverse of Eq. (6.8) is then
K0 = =L [60) + v (6.10)
1+

where ¥ = (u/v)/(1 + ) is the inverse relaxation time of the / = 2 harmonic
component of the deformation and where v, as before. is the viscosity of
the homogeneous earth model. Introducing the explicit expressions for ¢
and kJ into MacCullagh’s formula we get

(G/2r)[Coi(x3 + X3 = 2xD) + « + + = 6Ciaxixa] = (a/r)’x(1) * KX(2) (6.11)

where it has been assumed that I §; + C; are the elements of the inertia
tensor of the rotationally deformed sphere. Invoking the fact that a solid
harmonic will produce deformations which leave the trace of the inertia
tensor Cj; invariant (e.g., Rochester and Smylie, 1974), we may equate like
terms on each side of Eq. (6.11), using Eq. (6.6) to obtain

¢ T 20,
Ci) = 260+ 5) w;()w;(t) 3 i

t 2t

+ iy f {w,-(r Noy(t') = 3’-;—11 a,}e"*""” dr ] (6.12)
It is a consequence of the incompressibility of the model that the term
w’r?/3 in Eq. (6.5) contributes nothing to the response. To obtain the total
inertia of the rotating sphere we have to add to Eq. (6.12) the inertia which
the sphere would have in the absence of rotation. This is obtained by as-
suming that the effect of rotation is to change the moment about the polar
axis by an amount 2A/3 and about the two orthogonal equatorial axes by
—A/3 (e.g.. Burgers, 1955), where A is unknown. If we insist that the resulting
principal moments equal the observed values C and A then we get the
moment of inertia of the nonrotating sphere as

I=A44+(C—-4)/3 (6.13)
The total inertia tensor may then be written as
Jy(t) = 13 + Cy(1) + I;(r) (6.14)

where the ; are the contributions due to loading effects.

6.2.2. Perturbations of Inertia Due to Surface Mass Loading. The con-
tributions to /; are due to the ice sheets themselves and to the induced
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deformation. Rather than analyze the response to a realistic unloading event
such as that described by the ICE-2 model discussed in Section 4, we will
content ourselves here with an analysis of disk load approximations to such
histories. Since the actual forcing is dominated by the large-scale Laurentide
sheet, whose geometry is well known, and since the polar motion depends
only upon the / = 2 component of the response to this forcing, the disk
load approximation will be a rather accurate one. The strategy which we
will adopt to calculate the I;; will be to take advantage of the symmetry of
the circular cap by calculating /;; in a coordinate system which has the cap
on its polar axis: if this inertia tensor is called /}; then we can find 7, from
I'; by multiplying with an appropriate rotation matrix.

Now an ice sheet with angular radius & and mass M may be described
by the following surface density (Farrell, 1972):
M [ < (21 + 1)(1 + cos ) dP,(cos a)

4ra Pot 2

ICE/gy —
o) i I+ 1) d cosa

P(cos 9):| (6.15)

where # is the angular distance from the center of the cap. We may force
our simple disk load to mimic a closed hydrological cycle by assuming that
there is a defect of mass in a global ocean outside the ice sheet which is of
magnitude —M distributed over the area 27wa*(1 + cos «). This global ocean
has surface density

M [_Po - (27 + 1)(1 — cos «) dP(cos a)

oC/gy —
oD = 1 I+ 1) 3 cos a

P(cos 9)} (6.16)

Conservation of mass is then assured because the surface integral of
a(f) = o'F + ¢°C vanishes.

In the coordinate system x,x,x; which has the center of the ice cap along
the x; axis and distance a from the origin, the perturbations of inertia due
to o(f) are

, @ . @ L2
f”— 3L3 fgg 3 Lg ]33 3 Lg (6173)
where 1 1
L,=as f J. Py(x)a(x, ¢)f(s) dx do (6.17b)
0 =1

and we have inserted a factor f(s) which depends upon the Laplace trans-
form variable s in order to introduce a time dependence into the forcing
function. To the /}; in Eq. (6.17a) we must add the perturbation associated
with the deformation of the earth due to loading.

The deformation-induced perturbations may be calculated directly from
the definition of the moment of inertia tensor () as
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() = J. po(N)[Xi(8)x:(2) 65 — X:i()x,(0)] d°x (6.18)
where pg(r) is the (in general) radially stratified density field, and x denotes
the position vector of the mass element with density p, which may be
expanded as

x=Xx+ulx, 1) (6.19)

where X denotes the initial equilibrium position of the mass element, and
u the deformation-related displacement from initial equilibrium. Linear-
ization of Eq. (6.18) in the perturbations from equilibrium gives

Iy(s)y = f po(r)(2Xay 65 — X, — Xu,) dv (6.20)

v

To evaluate Eq. (6.20) for disk load forcing we need the displacement vector

u = ué, + 1, which from Section 3 may be written as

dP(cos 0) s ]
a

w

=2 [L'}{r, $)P(cos 8)é, + Vi(r, 5)
=0

(6.21)

Substituting Eq. (6.21) into Eq. (6.20) and evaluating for 7'%(s) gives
I53(5) = 2 f f f por [1,(8, r, 5) sin® 0
o Yo Vo

+ (6, r, 5) sin B cos 0] sin 6 df do dr ~ (6.22)

The functions u, and u,, for a load of arbitrary surface density o, may be
expressed in the form of convolution integrals as

2r

0, . r,s)= f J.T GR(B, r, S)o(0', ¢, 5)a* sin & d’ dp'  (6.23a)
0o Yo

U8, ¢, 1, 5) = J.J J.” G(B, r, )a(#. ¢, 5)a® sin 0 d’ dp'  (6.23b)
o Yo

where G® and GT are Green’s functions for radial and tangential displace-
ment which have spherical harmonic decompositions

GR(0, r, s) = 2. GR(r. s)P(cos 0) (6.24a)
=0

il 5.5y = 3 G o 2PR0S E) (6.24b)
/=0 al

Substitution of Eqs. (6.24) and (6.23) in Eq. (6.22) followed by application
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of the addition theorem for spherical harmonics vields (for the homogeneous
sphere)

=82 [ [ [ [ S04 61, 9]

X Pi(xNata(x’, ¢, fls dx' d¢' dr (6.25)

For the incompressible homogeneous sphere the parameters G§ and GT
may be determined from the analysis in Wu and Peltier (1982a) as

Gf=——(dr'+ d,r)(l D ) (6.26a)
et u + ¥
N TN )( Y )
I=—= (6d,r £ | e (6.26D)

where ¢ = 67Gp3/3, 6 = 19/a%, d, = 2Gpy/a’, d5 = —16Gpy/3a>. Substitution
of Eq. (6.26) into Eq. (6.25) then gives the analytic result

8?7,00 5 d](f: +d 1+ II'.‘Y

, = = = 3 T
1'35(s) s a et st+o Ly(s) (6.27)

where L,(s) is given by Eq. (6.17b). Now we may make use of the fact (Wu
and Peltier, 1982a) that the surface load Love number for the homogeneous

viscoelastic sphere is
ka(s) = 3
- 5

a + db) (6.28)

to write i
I'53(5) = — 3@ La(8)ka(s) (6.29a)

For the incompressible sphere the trace of the inertia tensor is invariant,
so that
Iy =I%==I%/2 (6.29b)

The total perturbations of inertia due to surface loading are found simply
by adding the contribution from the deformation (6.29) to the direct con-
tribution (6.17a) to obtain

.,

I'(s) = ]f s)
faﬂ=a;- + kal$)f(5) (6.30)
1) = = 22221 + ky9))f(s)

where A-(s) for the homogeneous incompressible model may also be ob-
tained from the general expression for k;(s) given by Wu and Peltier (1982a)
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as
_ Mol +4l+3)
ki(s) = —1 250) (6.31)
where
B(s) = a”'[lpogo + #s) (al* + 4l + 3)]

a

Expression (6.31) emphasizes the fact that for the homogeneous incom-
pressible model k5(s) — —1 as s — 0. In the next subsection we will see
that properties of realistic earth models which force this asymptotic value
of ky(s) to differ from —1 will have important consequences for true polar
wandering on the time scale of the Ice Age itself.

6.2.3. Solution of the Euler Equations for the Deglaciation-Induced Polar
Motion: The Homogeneous Earth Model. Given the perturbations of inertia
due to rotational forcing C;; defined in Eq. (6.12) and the perturbations
Ij = Ryl 'y from Eq. (6.30) (where R is the matrix of the similarity trans-
formation which rotates I'; into the principal axis system) we have com-
pletely specified the J;; in Eq. (6.14) which are required in the Euler equations
(6.1). These dynamical equations are clearly highly nonlinear in general and
therefore difficult to solve. Sabadini and Peltier (1981) have described a
numerical scheme which can be used to solve these nonlinear equations,
however, and have employed the exact solution to verify the validity of an
approximation scheme proposed by Munk and MacDonald (1960). This
approximation scheme is valid as long as the axes of figure and rotation do
not wander too far from the reference pole and is based upon linearization
of Eq. (6.1) in the small quantities 71, = w;/Q (where @ is the initial angular
velocity) and I;;/C where C, as previously, is the principal moment of inertia
of the planet. Application of this linearization scheme to Eq. (6.1) leads to
the following simple algebraic system in the Laplace transform domain of
the imaginary frequency s:

i
(— 5+ l)m(s) = U(s) + ¢(s) (6.32)
O'i'

where o, = Q(C — 4)/A is the Chandler wobble frequency for the rigid earth
and where m(s) = m(s) + im,(s). in which »1,(s) and m,(s) are the direcftion
cosines of the rotation axis in the xx,x3 svstem and i and ¢ are the following

“excitation functions” due, respectively, to the rotational deformation and
the surface load:

K3 (s)
ke

Y(s) = m(s) (6.33a)
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115(5) | [shhi(s) — Ls(t = 0)]

oi(s) = C— A C - 4) (6.33b)
_ Is(s) | [shia(s) — 1is(t = 0)]

ba(s) = C— A AC - 4) (6.33¢)

where ¢(s) = ¢,(5) + igo(s) and where k; = 0.934 is the so-called fluid Love
number associated with the centrifugal deformation (Lambeck, 1980). In
this scheme the solution to Eq. (6.32) describes the polar motion, whereas
the 1.0.d. variations are determined by the following decoupled equation for
ms(s):

! g
my(s) = ¢as) = — L:s) (6.34)
[
If in Eq. (6.10) we replace the factor 3/2 by the factor k; = 0.934 for the
real earth, then r )
Trwn f [ )
s) = 1 + 6.35

and the solution of Eq. (6.32) may be well approximated (Munk and
MacDonald, 1960) as

m(s) = — —2— ('—Y - —‘L&—) (s) (6.36)
¥ —lIgg\S S+« —log

where oy = o,p/(1 + ) is the Chandler frequency of the homogeneous
elastic earth. Inspection of Eq. (6.36) shows that the solution to the polar
motion problem apparently consists of the superposition of two normal
modes with imaginary frequencies s = 0 and s = /gy — 7 determined by
the locations of the poles of /(s) in the complex s plane. This led Sabadini
and Peltier (1981) to approximate the solution of Eq. (6.36) by neglecting
the second term in parentheses on the right-hand side on the basis of the
argument that the high-frequency Chandler wobble described by this term
should not be efficiently excited by the slowly varving ice sheet loads which
contribute to the excitation spectrum ¢(s). This argument turns out to be
incorrect. as has recently been pointed by Peltier and Wu (1982), though
Sabadini et al. (1982a,b) have continued to employ it. When the second
term in parentheses is neglected, the time domain solutions are radically
different from those which include its influence, even when the final solution
is subjected to a running average over the period 27/0, to remove explicit
appearance of the Chandler wobble. The reason is clearly (in retrospect!)
that this term makes an important nonzero contribution to the mean motion
of the pole. The results obtained in the papers of Sabadini er al. (1982a.b)
are therefore completely erroneous.

To understand the source of this error from an algebraic point of view,
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we may substitute Egs. (6.30) and (6.33) directly into Eq. (6.36), assuming
that the rotational forcing is produced by a single circular ice cap whose
center lies an angular distance f (say) from the CIO. If the coordinate
direction “1™ is assumed to point toward the glaciation center then the
explicit form of Eq. (6.36) is

m(s) = ——2 ('—*’ N[ )[1 + ko)) + igDf(s)  (6.37)
6 Al {1 1) BV ) STy —log
where R
o_a@sinfcosh o _ @ sinfcosf
T Tt L.. 3 = — !
N Te-a) B Ty L

where L} = L,/f(s) from Eq. (6.17b) and the surface load Love number
k»(s) is taken to be given by

o= —(1 — is) wy
feals) = (1 + ) [l + St 'y] (6.36)

which differs from the exact expression for the homogeneous model (6.28)
in the appearance of the small positive parameter /,, which is the so-called
isostatic factor discussed in Munk and MacDonald (1960). Its introduction
in Eq. (6.38) enables the homogeneous earth model to mimic realistic mod-
els of the earth in the sense that

lim [1 + ky(s)] = L, # 0 (6.39)
=0

Realistic earth models have /; # 0 because of the presence of the surface
lithosphere and of internal density stratification, but the former effect is
most important. Although we will not give the algebraic details of the La-
place inversion of Eq. (6.37) here. it can be accomplished analytically. The
exact solution for the mean motion of the pole (i.e., Chandler wobble fil-
tered) for an arbitrary time dependence of the ice sheet loading and un-
loading f(¢), is found to be such that

. Q ~
my(1) = o [y(1 + B)Pf(@) + (P, + P2)f(1)] (6.40)
0o

where 71,(1) is the speed of polar wander in the direction of the centroid of
the ice sheet. positive being toward and negative away from this direction.
The parameters P, and P, which appear in Eq. (6.40) are defined as

_ Aog l;a*sin f cos § L}

= 6.41
TR R (C-4) (641)

P,=%P, (6.42)
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It is useful to consider the solutions (6.40) for the following two different
choices of the time history f(z).
Case A

In this example we take

f1) =0, {<a
(t—a
- <l<h
b-a’
=1, t=b (6.43)
From Eq. (6.40) the solution in this case is
my(f) = 0, t <a
Q[P+ P e L= a:l
=— + (1 + g)P, —— <
Q
=— (1 + P, t>b (6.44)
A.O'Q

This corresponds to the situation in which a disk load is removed from
the surface over the time interval (b — @) at a uniform rate. The assumption
is that the load was initially in isostatic equilibrium. It is clear from Eq.
(6.44) that 71, is nonzero for ¢ > b only because /; # 0 [see Eq. (6.41)]. This
model is essentially identical to that of Nakibogliu and Lambeck (1980),
although these authors did not employ our simple disk load approximation
to the melting history. Both f(¢) and #a(f) for this model are shown in Fig.
37a. Since v = (u/v)/(1 + &) depends upon the viscosity » and 1, is an
observable (1, =~ 1°/10° yr from Fig. 36), we may invert Eq. (6.44) for
{ > b to obtain ». This gives » =~ 6 X 10%° Pa sec with /, =~ 0.006 (Munk
and MacDonald, 1960), essentially identical to the value inferred by Nak-
ibogliu and Lambeck (1980) on the basis of a much more complicated
model of the deglaciation history. In fact Nakibogliu and Lambeck (1980)
employed the ICE-1 model of Peltier and Andrews (1976) in their calcu-
lations. This serves to demonstrate the adequacy of the disk load disinte-
gration model for the polar wander analysis and reveals the basic physics
clearly.

Case B

Since we know from the oxygen isotope stratigraphy in deep-sea sedi-
mentary cores that the main ice sheets of the Pleistocene have periodically
appeared and disappeared with a time scale of about 10° yr, it is quite clear
that the simple unloading model of case A is something of an oversimpli-
fication. In order to determine the way in which a load cycle modifies the
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solution (6.44) we will consider the history

f()—(t_ )), a<t<b
bl
_(b-c)’ b=t=c
=0, otherwise (6.45)

which consists of a single loading epoch for @ < ¢ < b and a single unloading
epoch for b = ¢ < ¢. Substitution of Eq. (6.45) into Eq. (6.40) gives the
explicit solution

i _i{P;+P2) (t —a) ”

m(f)—AJO b—a) (I +p )Pl(b 2’ ast=bh
_—Q Pt R) (t—o0 i
_Ao*g-i(c—a) + v (l+,u)P.(C b’ b=t=c
=0, otherwise (6.46)

which is plotted along with f(z) itself in Fig. 37b. It is quite clear from the
form of Eq. (6.40) that no matter how many cycles of the form (6.45) may
have preceded the single cycle we have analyzed, the solution within each
cycle is completely oblivious of the others since the system has no memory.
Therefore, if a large number of cycles of this form have occurred prior to
the time ¢ = ¢ and if the ice sheet is not actively accumulating for ¢ > ¢,
then Eq. (6.46) show that () = 0. Since we are presently living in precisely
such a time,we see that the homogeneous viscoelastic model of the planet
which we have been considering up to now in this section is completely
incapable of delivering accord with the observed secular drift of the pole
which is revealed by the ILS data shown in Fig. 36. This is completely
contrary to the result obtained in Sabadini and Peltier (1981). but their
results are invalid because of the neglect of the second term in parentheses
on the right-hand side of Eq. (6.36).

The above-discussed results for cases A and B show that the homogeneous
viscoelastic model of the earth is completely incapable of delivering accord
with the observations. The analyvsis of Nakibogliu and Lambeck is incor-
rect because the actual history of loading is cyclic and the case B results
show that the predicted speed of polar wander for the present day in such
a case is identically zero. This clearly raises the embarrassing question of
whether our hypothesis that the secular drift seen in the ILS pole path is
in fact due to Pleistocene deglaciation. In the next subsection we will show
that this hypothesis is correct but the viscoelastic stratification of the real
earth must be taken into account since it contributes in a crucial way to
the forced polar motion which is observed in the astronomical data.
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6.2.4. Solution of the Euler Equations for the Deglaciation-Induced Polar
Motion: Stratified Viscoelastic Models. As can be shown in a rather straight-
forward fashion, all of the preceding analysis up to and including Eq. (6.34)
will continue to hold for layered viscoelastic models so long as we replace
the load and tidal Love numbers k»(s) and k1(s) by their equivalents for the
layered model under consideration. Analysis in preceding sections of this
article then shows that the tidal Love number may be written in general

in the form
M

Ki(s) = k1= + 2 —f*-— (6.47)
j=1 § T Sj
With ks = k3(0) = k5 + =¥, (¢/s;) required for insertion into Eq. (6.32)
from Eq. (6.33a), we may rewrite Eq. (6.47) as

M
wm=m—sz’@' (6.48)
J=1

E S+Sj

We may similarly manipulate the general expression for the surface load
Love number

M
ka(s) = K& + 2 — (6.49)
j=1 i Sj
by defining
1 + ko2(0) = [ (6.50)
for the layered model, to write
L+ kals) = = 22— 6.51)
i Sists

Using Egs. (6.48) and (6.51) in the Euler equation (6.32) along with the

definition of ¥ in Eq. (6.33a) and the ¢ appropriate for a circular disk load

as in the last subsection, the equation which replaces Eq. (6.37) for this

general case is

—ia[1 — i(s/Q)I[1 + ka(5)]103f(s)

s[1 = Gior/ke) ZH, (1/s)/(s + )]
Since 5; < 0y, § < 0, (4/5)/Ke R O(1), and [o,/(s + 5)I[(1/s))/kd] > 1, Eq.

(6.52) reduces directly to

_ k(1 — Gs/DI[L + ka(9)]08(s)

m(s) = (6.52)

m(s) (6.53)

Since X
asinfcosf Ly Q

C—A Ao,

@9 = a sin 6 cos f L}
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and
oo _ ki — K3E 2 (t/s)
a, N kr - k[
we may define
18;' _.__i‘L
2 (4/s)

to reduce Eq. (6.53) to the form

Q asinflcosh L}

m(s) = P W (; = #)[1 + ky($)1f(s) (6.54)

Defining & = a° sin # cos # L}/, the real part of Eq. (6.54) is

Q « [tk
A0 Bl vy hs I

my(s) = (6.55)

Note that for the homogeneous earth &« = (I + p)P, and 5; = v with
j =1 (ie., 1 mode). In this case Eq. (6.55) reduces exactly to the 7,(s)
obtained from Eq. (6.37) by approximating —ia,/(y — igg) = 1, and similarly
replacing the second term in parentheses on the right-hand side of Eq. (6.37)
as —iao/(s + v — igp) =~ 1 (not 0, as assumed in Sabadini and Peltier, 1981).
It is this #7,(s) which gives the m1,(¢) implied by Eq. (6.40). Now the Laplace
transform domain solution (6.55) may be inverted analytically, although
the algebra is extraordinarily tedious and will not be given here. The time
domain solution requires knowledge of the roots —\; of the degree M — 1
polynomial
M

Py_i(s) = Z (8, I (s + )]

i#f

1
[ (s ) (6.56)

which may be determined numerically with any conventional root-finding
algorithm since the s; are known. The exact inverse of Eq. (6.55) vields a
function #,(7) whose time derivative is

7
(1) = j—“ {{1 -3 ‘_"i’fﬁ]fm _ q0)f(@),

ap j=1 s IL N
-\) = (1/s) _ Ri(=)\) }d }
E =1 iy J i s P
T [x Moty =00 " 2 b Do O - Mot =50
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in which g(s) = s(s + N)+ < «(s + Ay—y) — (5 + 5)- - - (s + 53 and
M-1
R(s)=TI s+N) - Tl s +s)
i=1 i#f

Clearly the general solution (6.57) differs in an extremely important way
from the equivalent solution for the homogeneous model expressed in Eq.
(6.40). The important difference is the presence of the third term on the
right-hand side, which consists of a sum of terms which are each propor-
tional to the time rate of change of the convolution of f(f) with a decaying
exponential. The presence of this term indicates that stratified viscoelastic
models will exhibit an instantaneous response which includes a contribution
from the forcing applied at all past times. Each of the M — | terms in the
sum therefore represents a memory of the past state of the system, and it
is this history-dependent term. which is clearly absent from the homoge-
neous solution (6.40), which will allow the layered viscoelastic model to fit
the observed polar wander in the ILS pole path even when the load is cyclic.
The correct solution [Eq. (6.57)] for the layered viscoelastic model is com-
pletely different from that found in Sabadini ez a/. (1982a,b). Their solution
is obtained by neglecting s with respect to s; in the denominator of Eq.
(6.54), which amounts to assuming that the earth behaves as a fluid insofar
as the rotational response is concerned, which is itself consistent with the
assumption in Sabadini and Peltier (1981) and the neglect of the second
term in parentheses on the right-hand side of Eq. (6.36). That the assump-
tion is physically incorrect follows simply from the recognition that both
the tidal and surface load Love numbers. k3 and k, respectively, have
precisely the same spectrum of decay times as stated in Egs. (6.47) and
(6.44). The set s; (j = 1, M) for kT is the same as the set s; for k,. Since
kT and k, determine the time dependence of the response to tidal forcing
and surface loading, respectively, it is quite clear that there is a basic in-
consistency in assuming the fluid limit for one and not for the other. The
correct solution to the polar wander equations for models with arbitrary
viscoelastic layering is that given by Eq. (6.57), which is valid for arbi-
trary f(2).

As in Section 5, we determine f(f) by invoking the oxygen isotope data
shown previously in Fig. 32a: however, we will employ the slightly more -
complicated waveform shown in Fig. 38a. which differs from that shown
in Fig. 32b in that the deglaciation phase of the load cycle is assumed to
take place over a finite rather than an infinitesimal time interval. Although
this does not produce any marked effect on the results we have included
it as a better approximation to the actual '*0/'°0O data. Each of the cycles
of this wave shape has a mathematical form described by Eq. (6.45). To
determine the solution for this excitation we simply substitute f(r) into Eq.
(6.57). If there have been N previous load cvcles of the form (6.45) then
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FIG. 38. (a) The sawtooth approximation to the load history which is employed in all of the
calculations in this section. (b) The prediction of polar wander speed as a function of time
during the cycle for viscoelastic model I. The dashed line is the speed which is predicted on
the basis of the assumption that no glaciation occurs subsequent to the last deglaciation event.

each of the convolution integrals in Eq. (6.57), during and after the current
load cycle, is given by expressions of the following form:

(i) During the glaciation phase

d ] = —r(t—Ar)
ey = —pe+ : o (6.58a)
(i) During the deglaciation phase
d ) [E,TAT__ e‘ﬂf—.}?’) 1 — e-y._\T]
= “vy = —Be ¥ + —(t—an — 5
Lt e =5 7| (6580

(iii) For f = 0 following the latest deglaciation event (i.e.. today)
d
—(fee™) =—ge™ (6.58¢)
dt
The parameter 8 has the following definition:

e—) AT 1 E,-yAT g l 1 st e—-rM_‘.T-_\:J
8 =[ T :":1 _ e—w-w} (6.584)
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while At and AT are, respectively, the duration of the deglaciation and
glaciation phases of the load cycle. The oxygen isotope and other geophysical
data suggest A7 =~ 10* yr and AT = 9 X 10* yr. These are the numerical
values of the parameters which we have employed in constructing Fig. 38
and in all of the calculations to be described here. The complete solution
for the polar motion of a stratified viscoelastic model forced by N cycles
of glaciation and deglaciation is obtained simply by substituting terms of
the form (6.58) into Eq. (6.57), where +y is replaced by the appropriate A,
for each term. Since the 10°-yr cvcle has dominated the climate record only
through the Pleistocene period. which began about 2 X 10° yr B.P., and
since it is essentially absent from the record prior to about 3 X 10° yr B.P.,
we have assumed the conservative N = 30 in our calculations.

For an earth model with 1066B elastic structure, a constant mantle vis-
cosity of 10*! Pa sec, an inviscid core, and a lithosphere of thickness 120
km, the variation of polar wander speed 71, is shown in Fig. 38b as a
function of time through the load cycle. At a time like the present, of hiatus
in the load cycle, the solution follows the dashed rather than the solid curve.
The polar wander speed for the inhomogeneous model no longer drops to
zero immediately when the load is removed. This is due to the presence of
the history terms in Eq. (6.57) which are entirely a consequence of the
viscoelastic layering of the earth model which, as we have seen previously,
is responsible for supporting a multiplicity of normal modes of viscous
gravitational relaxation for each spherical harmonic degree in the defor-
mation. The second point to note from Fig. 38 is that the predicted mag-
nitude of the present-day polar-wander velocity is of the same order as that
observed astronomically. Furthermore, the direction of the predicted mean
motion is toward the centroid of the disk load (i.e., positive), which is also
in accord with the observed apparent motion’s being in the direction of
Hudson Bay. It is clear that we may expect to constrain the parameters of
the stratified model by fitting it to the rotation data.

On the basis of the above discussion it should be clear that the polar
motion data will be explicable in terms of glacial forcing only because the
real earth is viscoelastically layered. As shown in Section 5, the layering was
also required in order to understand the free-air gravity anomalies observed
over present-day centers of postglacial rebound. In that application we
showed that the most important features of the layering were the density
discontinuities across the phase boundaries located in the mantle transition
zone at 420 km and 670 km depth. and that the observed free-air gravity
anomaly provided a high-quality constraint on the viscosity of the lower
mantle. It might be naively expected that the rotation data would be sensitive
only to the mean viscosity of the mantle, since they depend only upon the
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FIG. 39. (a) Prediction of polar wander speed as a function of time for the five realistic
viscoelastic models (I-V) discussed in the text. The observed speed of polar wander in the ILS
data (1°/10% yr) is shown on the figure. (b) Predictions of the nontidal acceleration of rotation
for the realistic viscoelastic models 1-VII. Various of the observational estimates of this pa-
rameter are shown on the figure.

degree-two harmonic of the deformation, and that the long-wavelength un-
dulation should sample the mantle throughout its volume. This expectation
turns out to be only partly borne out by calculation. Of equal importance
to the results. as we shall see, is the magnitude of the isostatic factor /; which
is defined for the layered model in Eq. (6.50). Since the magnitude of the
isostatic factor is controlled principally by the thickness of the surface litho-
sphere, the predicted polar motion is very sensitive to this feature of the
viscoelastic lavering. This may perhaps have been anticipated on the basis
of the important role which /; was shown to play for the homogeneous
model analyzed in the last subsection.

Figure 39a illustrates a sample of the results obtained with the complete
theory for several different stratified viscoelastic models. This plate shows
the speed of polar wander as a function of time since the end of the last
deglaciation phase for five different layered models (I-V). whose properties
are listed in Table VI. Models I and II both have 120-km-thick lithospheres
and 1066B elastic structures and differ from one another only in their lower
mantle viscosities, which are 10°' Pa sec and 10** Pa sec for models I and
1L. respectively. Since the observed present-day speed of polar wander is
1°/10° yr it is quite clear that the model with high lower mantle viscosity
is more strongly rejected by the rotation data than is the uniform viscosity
model . However, it is equally true that the model preferred by the sea level
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and gravity data, essentially model I, does not provide an acceptable fit to
the rotation data. It predicts a present-day speed of polar wander of only
about 0.3°/10° yr, which is only a third of the observed speed. Clearly,
reducing the viscosity of the lower mantle somewhat further would further
increase the predicted speed, but we would then be unable to satisfy the
gravity anomalies observed over Fennoscandia and Laurentia as shown in
Section 5 of this paper. Our first recourse must then be to increase /; by
increasing the thickness of the lithosphere while maintaining the viscosity
of the mantle equal to that of model I. Models III and IV have lithospheric
thicknesses of 195 km and 245 km, respectively. Inspection of Fig. 39a
shows that the model with the thickest lithosphere comes closest to fitting
the astronomical observation of present-day polar wander speed (extrapo-
lation suggests that a best fit occurs with L =~ 300 km). However, this
thickness is considerably greater than that suggested by some other lines of
evidence, and it is important to inquire whether there may be other geo-
physical data which could be invoked in support of this number.

There are in fact several lines of evidence that suggest a value of L, at
least for continental lithosphere, which is as high as this. The most important
of these data, insofar as we are concerned here, consists of a subset of the
RSL histories which were discussed in Section 4. There it was shown that
RSL data from sites along the eastern seaboard of the United States, to the
south of the location of the ice margin at 18 kyr B.P. (which was near
Boston), all differ systematically from the predictions made on the basis of
viscoelastic model 1. The theoretical model predicts much more submer-
gence at these sites than is actually observed. It should be fairly obvious
intuitively that it is in just this peripheral region that the flexure of the
lithosphere is most extreme and therefore in just this region that the theo-
retical predictions will be most sensitive to lithospheric thickness. When

TABLE V1. PROPERTIES OF THE LAYERED MODELS EMPLOYED
IN THE ROTATION CALCULATIONS

Lithospheric Isostatic Upper mantle Lower mantle
thickness L factor viscosity viscosity
Model (km) () (Pa sec) (Pa sec)
I 120 0.0091 10! 10*
11 120 0.0091 10* 10%*
111 195 0.0136 10% 10*
v 245 0.0209 10% 10*
L' 120 0.0091 2 X 10 2 X 10%
VI 120 0.0091 10%! 3 x 10%

VII 120 0.0091 10% 10%
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RSL predictions are made for models with increasing values of L it is found
that the variance between observation and theory is reduced to zero at edge
sites with a value of L very near that suggested by the preceding analysis
of the polar motion data. The details of this analysis will be presented
elsewhere. It should also be clear that this increase of the value of L from
that in model I will not change anyv of the results for RSL and free-air
gravity at sites inside the ice margin. This expectation is also borne out by
direct calculation. We will return to discuss the meaning of this large value
for the lithospheric thickness in Section 6.3.

On the basis of the above analvsis we may take it as established that the
polar wander observed in the ILS pole path is a memory of the planet of
the glaciation cycle to which the continents of the Northern Hemisphere
have been subjected for at least the past 2 X 10° yr. In fact, there is yet
another astronomical observation which may be invoked to check the result
obtained from the analvsis of the polar motion. This is the so-called nontidal
component of the acceleration of rotation. This observation, discussed in
Munk and MacDonald (1960) and more recently in Lambeck (1980), may
be obtained through an analysis of the historical variations of l.o.d. by
subtracting from the data the variation expected on the basis of the as-
sumption that the lunar tidal torque has not changed significantly. When
one does this one obtains a residual which yields an acceleration of rotation
corresponding to the values of «;/Q listed in Table V which have been
obtained by various authors using different methods of analysis. The theo-
retical prediction of 715 follows immediately through Laplace inversion of
Eq. (6.34) with the appropriate /s3(s) inserted on the right-hand side. Now
I55(5) for the disk load approximation of the melting history is given by

L35(5) = (/3)(1 = 3 cos? B)(1 + ky)Lif(s) (6.59)
with
+ho(s) = = 2 L ——
;i S5t

as in Eq. (6.31). The Laplace inverse of I33(s) is clearly

I5(0) = % (1 = 3cos’ G)Lé[(f_‘ -2 E)f(f] + 2 r f(n) * e—-‘ﬂ] (6.60)
) 4

J
and from Eq. (6.34) we have
.‘?.13 = —133(1);’C (6‘61}

Figure 39b compares the prediction (6.61) to the observations for the
same set of stratified viscoelastic models as were discussed in the context
of our previous considerations of the polar motion observations. We have
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also used the same cyclic f(f) used to construct Fig. 39a and evaluated the
contribution from the history integrals f(r) * ¢ % on the basis of the as-
sumption that there have been 30 previous cvcles in the load history, each
of duration 10° yr. From the structure of the solution (6.60, 6.61) we see
that it will not be sensitive to the isostatic factor /;, since this appears only
in the first term in the square brackets on the right-hand side of Eq. (6.60)
where it multiplies f(¢). Since f(:) = 0 now. /, will not contribute to the
observed nontidal acceleration of rotation. This explains why models I, I1I,
and IV in Figure 39b predict essentially the same present-day nontidal
acceleration of rotation (only the curve for model I is shown explicitly).
These models essentially differ only in the thickness of their lithospheres
and therefore only in their /; values. A more detailed analysis of the solution
space for a range of models which all have a lithospheric thickness of 120
km and differ from one another only in the value of the mantle viscosity
beneath 670 km depth was presented in Wu and Peltier (in preparation).
This shows that there are in fact two values of the deep mantle viscosity
which are equally acceptable to this datum. one near 10*' Pa sec, which is
that which accords with the polar wander requirements, and one much
higher near 3 X 10* Pa sec, which is completely rejected by all of the
previously discussed information (i.e., RSLs. free-air gravity anomalies, and
polar wander speed). The double-root structure of the nontidal l.o.d. so-
lution was first pointed out in Sabadini and Peltier (1981), whose analysis
of this datum does not suffer from the error made in connection with the
polar wander analysis. The fact that model II is preferred over model I in
Fig. 39b is a consequence of the fact that both the Antarctic and Fenno-
scandian ice sheets have been omitted in our analysis. When these ice
masses are included,the uniform viscosity model is again preferred by the
observations.

One additional global observable which we can predict reasonably ac-
curately on the basis of the disk load model of the glaciation history which
we have employed for all of our previous analyses of rotational dynamics
concerns the time dependence of the second-degree component in the spher-
ical harmonic expansion of the earth’s gravitational potential field. This is
conventionally denoted by J,. The Green's function for the perturbation
of gravitational potential for a mass point is given in Eq. (3.40). This de-
termines the potential with respect to a point on the free surface of the
model since it includes the contribution from the Love number for radial
displacement /4. Relative to the earth’s center of mass the potential per-
turbation due to the point-mass load is

J6. 1) = % ?a [1 + E(0)]Pi(cos 6) (6.62)
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which we will assume is to be evaluated on the earth’s surface. Convolution

of this Green’s function over the circular disk load produces a perturbation
of potential which has a second-degree harmonic amplitude of

AJL(s) = \/EZE % M cos a Py(cos O)[1 + ka(s)]f(s) (6.63)

This may be simply inverted to the time domain to give AJ,, whose time
derivative is

i 4 M S P5 ©
AT = ﬁ M co aM_(cos )

X {[f -2 ﬂf{r} B ? r % (f * e"‘f’)} (6.64)

1

Following the last cycle of loading, f(z) = 0 and the time derivative of the
convolution integral in Eq. (6.64) is given by Eq. (6.58c¢), so that

? 4 M C]
AR = ~ap \/E M cos a Ps(cos 0) 2 rﬁje_s"“m” (6.65)
5 M. y

Evaluation of Eq. (6.65) for the realistic stratified viscoelastic models dis-
cussed previously in this subsection gives the results listed in Table VIL
Although J, has not yet been extracted from the satellite orbital data, the
increasingly high accuracy with which J; itself is being determined promises
that this will soon be possible. This observation will then provide us with
another means of constraining the viscoelastic layering of the earth and
serve as a cross-check on inferences made on the basis of the previously
discussed polar wander and l.o.d. observations.

6.3. Polar Motion and l.o.d. Constraints on the Earth’s
Viscoelastic Stratification

Our previously discussed analyses of RSL and free-air gravity data showed
that these data implied a viscosity profile for the planet such that » was
essentially infinite in a relatively thin surface “lithosphere™ and that this
was underlain by an upper mantle in which the viscosity was very near 10*'
Pa sec. Across the phase transition at 670 km depth the combined RSL and
free-air gravity data required an increase of viscosity but by no more than
a factor of perhaps two. The viscosity of the lower mantle according to these
data is then about 2 X 10?' Pa sec. or very nearly the same as that of the
upper mantle.
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TABLE VII. PREDICTIONS OF PRESENT-DAY j;

Model Jy (m? sec™?)
I 0.3032 x 107'°

It 0.1096 x 107°
v 0.1777 X 10710
A 0.4141 x 10772
VI 0.6160 x 107'°
VIl 0.6035 x 107'°

The polar motion and l.o.d. analyses discussed in the last subsection have
added somewhat to the further refinement of this picture. In the first instance
they are also quite sensitive to the viscosity of the lower mantle and also
insist upon a value near that (i.e., low) preferred by the RSL and free-air
gravity data. This is useful corroboration. The observation of polar wander
speed, in addition to this sensitivity to the deep structure, was also shown
to be particularly sensitive to the thickness of the lithosphere. In order to
fit the data with a fixed mantle viscosity of 10*' Pa sec we were obliged to
employ a lithospheric thickness in excess of 245 km, which is considerably
in excess of that which most would consider reasonable as a measure of the
average lithospheric thickness for the entire planet. Although there is very
good evidence from RSL data in the region peripheral to the Laurentide
ice sheet that the thickness of the continental lithosphere is in fact on this
order, it is a number which is quite impossible to accept for oceanic litho-
sphere which is well constrained seismically and through studies of the
flexure and gravity anomalies associated with seamounts and guyots. These
data constrain the thickness of the oceanic lithosphere to be less than or
equal to about 120 km. The explanation of this apparent inconsistency may
be found in the way in which the lateral heterogeneity of lithospheric thick-
ness is sampled by the rotational response. Work on this issue is ongoing.

6.4. Secular Instability of the Rotation Pole

As demonstrated in Fig. 38. the Pleistocene glacial cycle excites a true
wander of the rotation pole relative to the surface geography due to the
perturbations of inertia associated with the ice load and with the load- and
rotation-induced deformations. This polar motion in fact consists of two
parts, the first being a slow oscillation of the pole about the initial equilib-
rium position, and the second a slow unidirectional drift of the equilibrium
position itself. In order to demonstrate that the equilibrium position of the
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pole does in fact execute a slow mean drift we may simply average our
previously derived solutions over the period of a single glacial cycle. We
will consider the homogeneous and stratified cases separately under cases
1 and 2 below.

Case 1. Mean wander speed for the homogeneous model.

If we denote by ‘~ the average over a single glaciation-deglaciation cycle
and assume the sawtooth cycle described by Eq. (6.45), averaging of Eq.
(6.40) gives the result

Q %
my(t) = o (1 + )P f(2)
o

_ l+pd’sinfcosf L}
Y 7 C—d 5 s

(6.66)

which is obviously nonzero only because /; # 0. Since this number is exactly
one-half the instantaneous speed of wander which would be observed fol-
lowing removal of an equilibrated load which is given by the expression for
¢t > bin Eq. (6.44), and since this has been plotted for various values of the
viscosity of the model in Fig. 37a, we see that 7,(f) =~ —0.18°/10° yr. which
is near the value of —0.2°/10° yr found by Sabadini and Peltier (1981). In
fact. Eq. (6.62) is identical to Eq. (57) of Sabadini and Peltier (1981), so
that their calculation of the mean drift speed was not in error even though
their calculation of the time-dependent polar motion was completely er-
roneous. This number of —0.2°/10° yr is sufficiently large that it could
conceivably be important to the mechanism of climatic change itself and
might in fact be observable in the paleomagnetic record as a residual true
polar wander (TPW) after the data are corrected for the known drifts of the
continents relative to the hot-spot frame. The question is at least sufficiently
interesting that we should proceed to examine the magnitude of 1, (1) for
realistic stratified viscoelastic models of the planet. We note further that
the mean speed is negative [# in Eq. (6.62) is negative]. so that on the
average the Hudson Bay region is moving slowly toward the equator at the
computed rate.

Case 2. Mean wander speed for stratified viscoelastic models.

The mean speed of polar wander over the Ice Age cycle for layered models
may be determined by direct averaging of Eq. (6.57). Since f = 0. this
average may be written
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. Qa | ¢(0) e [ g(=\)
= — + S—— 5 S S
e Aao{ O+ 215 Hﬁ,o\ ¥
rils,  R(=\) ]5;1,-}
+ E LY D | — 6.67
i b Thewi e — M) dt (6.67)
where each of the terms Jk,-fdf has the explicit form
& _ _.8{1 _ e—A;AT) . 1 B f,—)\f-_\x (] B —:\iAT)
di v AT v AT YXAT)
B ~MAT — N Al eM(1 — e M)
— — i e 1 + ———————————————
v At € (= ) YA AL?
ex‘-(m—an e.\r(A!—_\T]
- - = (1 — eMATY(1 — g4 (6.68)

A At ¥~ At AT

which is clearly nonzero. The factor 8 is the same as in Eq. (6.58d) and
accounts for the memory of the system of the past N cycles. Because the
two terms in Eq. (6.68) which contain 8 do not cancel, it is clear that the
average speed of polar wander over each cycle will be a function of time.
In Fig. 40 we show a plot of the mean speed of polar drift, and the angular
drift itself, as a function of the cycle number in the load history for one of
the previously described viscoelastic models. For model I the average speed
over 30 cycles of the periodic sawtooth history is ~0.005°/10° yr, which
is about two orders of magnitude /ess than the mean drift speed given by
Eq. (6.66) for the homogeneous model. The effect of the viscoelastic layering
of the planet upon the predicted drift speed is therefore extremely important.
To understand how this comes about we may simply inspect the dominant
term in Eq. (6.67), which is proportional to the first term in brackets on
the right-hand side. For the homogeneous model this term is simply
—~ f(2), whereas for a three-mode layered model it is

515253 =
?\ As

F= f(n) (6.69)

Since the three-mode model is a good approximation to the spectrum of
model 1, if we associate s, §». and s3 with the MO, C0O, and M| modes,
respectively. inspection of Eq. (6.69) immediately explains the slow drift
speed obtained for the layered model. For model I we have 5, = 2.763,
sy = 0.3746. 53 = 5.318 X 107% X, = 1.438. and \, = 0.0421. Since f(2)

= 0.5, evaluation of Eq. (6.69) gives F' = — 4.59 X 1073 whereas for the
layered model —yf() = — 4.6. It is quite clear then that |F| < [—yf(z)|
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FiG. 40. (a) Net angular deflection of the rotation pole relative to the surface geography for
viscoelastic model I. (b) Variation of the “mean” speed of polar wander as a function of the
number of the glaciation-deglaciation cycle.

because of the long relaxation time s3! associated with the M1 mode. Insofar
as the mean drift speed is concerned. this slowest decaying mode is therefore
the rate-controlling mechanism. This can be understood physically by rec-
ognizing that in order to effect a mean drift of the rotation pole relative to
the geography, the equatorial bulge associated with the basic rotation must
execute the same net drift and this occurs at a rate governed by the spectrum
of the degree-two harmonic. As we have seen, this contains at least one
important mode with an extremely long relaxation time. This long relax-
ation time appears to stabilize the system.

That realistic layered viscoelastic models should be rotationally stable to
cyclic ice sheet forcing is in contradiction to the recent claims to the contrary
which have appeared in Sabadini er al. (1982a.b). Their calculations are,
however, marred by the mathematical error mentioned previously and are
therefore misleading. It does not seem that the analysis of the recent pa-
leomagnetic record by McElhinny (1973) and Jurdy and van der Voo (1974),
as revised by Morgan (1981) and Jurdy (1981), which suggests the existence
of as much as 10°-15° of net TPW since the Cretaceous. could then be
explained by ice sheet forcing.



DYNAMICS OF THE ICE AGE EARTH 119

In the next section we will focus upon an attempt to understand the
mechanism of climatic change which is responsible for the observed 10°-yr
glaciation cycle.

7. GLACIAL IsosTASY AND CLIMATIC CHANGE: A THEORY OF THE
Ice AGE CYCLE

There are at least two major unsolved problems connected with variations
of global atmospheric climate on the time scale of 10107 yr. The first of
these problems has to do with the question of the origin of ice ages. That
is, how and why do ice ages such as the one which has marked the present
Pleistocene period originate? Although the geological record shows evidence
of several such periods during the past few billion years, they nevertheless
appear to be somewhat unusual. Since the current ice age has lasted only
about 2 X 10° yr, and since no substantial change of the degree of polar
continentality can have occurred on this time scale, it appears that polar
continentality alone cannot provide the explanation for ice age occurrence.
The question remains open. In this section we will address a second im-
portant question, which concerns the explanation of the almost periodic
succession of ice sheet advances and retreats which has characterized the
present ice age and which is illustrated so clearly in the record of 130/1%0
variations obtained from deep-sea sedimentary cores. An example of one
such oxygen isotope stratigraphy from Shackleton and Opdyke (1973) was
reproduced in Fig. 32a and has been emploved in our theoretical analysis
of the adjustment process in order to provide control on the characteristic
time scale of ice sheet advances and retreats required to estimate the im-
portance of deviations from initial isostatic equilibrium. In this section we
will argue that the observed quasi-periodic oscillation of the main Northern
Hemisphere ice sheets revealed by these data is due to the excitation, by
fluctuations in the effective insolation, of a systemic free relaxation oscil-
lation which is supported in crucial part by the process of glacial isostatic
adjustment.

7.1. Oxygen Isotope Stratigraphy and the Observed Spectrum of
Climate Fluctuations on the Time Scale 10°~10° Years:
The Milankovitch Hypothesis

Analysis of oxygen isotopic records such as that shown in Fig. 32a has
recently led 10 an intense revival of interest in the astronomical theory of
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the ice ages which was so strongly advocated by Milankovitch (1941) but
which had also been discussed earlier by Adhémar, von Humbolt, and Croll
(e.g., see Imbrie and Imbrie, 1978, for an interesting nontechnical discus-
sion). The astronomical theory of long time scale paleoclimatic fluctuations
asserts that the observed oscillations of Pleistocene climate are controlled
entirely by changes in the effective insolation received by the earth. Vari-
ations in the radiation intensity are governed by the temporal changes in
the parameters of the earth’s orbit produced by the varying gravitational
attraction of other planets in the solar system. Milankovitch’s contribution
to this idea was to perform the first laborious set of calculations to determine,
as a function of latitude and season, the time variations of insolation which
would have been produced over the past several hundred thousand years
of orbital history. His calculations have been superseded in the more recent
literature, however, first by Vernekar (1972, 1974) and more recently by
Berger (1978). Figure 41 is redrawn from Birchfield and Weertman (1978)
and shows a power spectrum of the insolation time series of Berger (1978)
for lat 60° N, which is near the latitude of the maximum thickness of Lau-
rentide ice. The spectrum of insolation variations clearly contains energy
at three very well defined periods, these being 19,000, 23,000, and 41,000
yr. The first two peaks are due to the precession of the equinoxes, whereas
the third is due to the periodic variation of orbital obliquity. It is crucial
for our present purposes to note that there is essentially no variance in the
insolation time series at a period of 10° yr, yet by inspection of Fig. 32a we
can see, even visually, that the history of ice volume fluctuations is dom-
inated by a periodic oscillation on this time scale. The ideas which we will
develop in this section are concerned with an attempt to explain how the
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F1G. 41. Power spectrum of the insolation time series of Berger (1978) for 60° latitude. Note
the absence of energy at periods near 10° vr.
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astronomical forcing on the precession and obliquity time scales might be
transformed into a response which is dominantly on the time scale of 10°
yr. To understand this we will clearly have to invoke nonlinear processes.
Before discussing the model which we have developed to resolve this prob-
lem, however, it is useful to attempt to quantify the extent of the dominance
of the 10%-yr oscillation in the stratigraphic record of oxygen isotopic vari-
ability.

In Fig. 42 we show a sequence of plots of the isotopic ratio 130/'%0 as
a function of depth in centimeters in several Pacific and Atlantic deep-sea
cores based upon data in Imbrie e al. (1973) and Shackleton and Opdyke
(1973, 1976) as composited in Oerlemans (1980). In order to transform
these isotopic depth series into time series we have to be able to locate at
least one time horizon at some depth in the core, and the only method by
which it has proved possible to do this is by locating the depth of occurrence
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FIG. 42. A comparison of oxygen isotope records from four different deep-sea sedimentary
cores based upon data from Imbrie et al. (1973) and Shackleton and Opdyke (1973, 1976).
The heavy vertical bars marked M-B denote the depth corresponding to the Matuyama-
Brunhes boundary of age 730 (+20) kyr.
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of the faunal extinctions which mark the last change in polarity of the earth’s
magnetic field. This occurred 730,000 yr B.P. (Cox and Dalrymple, 1967;
Mankinen and Dalrymple. 1979) with an error which is at most 20,000
yr and is called the Matuyama-Brunhes transition. This horizon has now
been located in a reasonable number of sedimentary cores and, subject to
the assumption of constant sedimentation rate at each site, leads to a linear
mapping of the depth scale to a time scale. For the records shown in Fig.
42, on which the dashed lines join constant time horizons, it is quite clear
that the rate of sedimentation varies from site to site. Clearly the cores from
sites characterized by high rates of sedimentation will preserve a higher
resolution record of the climatic variability than will cores from sites with
low sedimentation rates. The sedimentation rate in core V28-238 is about
2 cm/10°? yr, whereas that in core V28-239 is closer to 1 cm/10? yr.

The most useful representation of the time series obtained by transfor-
mation of the data to the time domain is in terms of the quantity §'%0,
which is simply the variation in the concentration of '*O measured in parts
per thousand relative to the '®O concentration. It is quite generally accepted,
as argued in Shackleton (1967) and Shackleton and Opdyke (1973), that
this isotopic anomaly (measured in foraminifera tests contained in the sed-
iments) provides a direct measure of the ice bound in continental ice com-
plexes. Time series of this isotopic anomaly from cores V28-238 and V28-
239 are shown in detail in Birchfield et al. (1981), and in Fig. 43 we show
reproductions of the power spectra of these time series from this paper.
These spectra show in a completely unambiguous way that the variance in
the ice volume record is dominantly contained in the oscillation with period
10° yr, a fact which was first established by Hays et al. (1976), who performed
similar analysis on the data extracted from core RC11-120, which was also
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FIG. 43. Power spectra of the 4'%0 time series from Pacific cores V28-238 (a) and V28-239
(b) reproduced from Birchfield er al. (1981). Note the dominance of the spectral peak near a
period of 10° yr.
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analyzed by Shackleton (1977). Besides the dominant oscillation at 10%-yr
period, however, the spectra clearly show statistically significant variance
at the astronomical periods of ~41,000 and ~23,000 yr. Hays et al. (1976)
argued on the basis of similar power spectra which they obtained from core
RC11-120 and one other that the results demonstrated the validity of the
astronomical theory of the ice ages. They certainly do establish that the
cryosphere responds to the astronomical forcing, since both the precession
and obliquity periods do appear in the power spectra of §'*0. However
Hays er al. (1976) were not able to explain why the dominant cryospheric
response consisted of a quasi-periodic 10°-yr oscillation when the astro-
nomical forcing contained no power at this period (Fig. 41). Birchfield et
al. (1981) have recently proposed a model which attempts to explain this
observation, and although it achieved very limited success, it is nevertheless
instructive since it does contain what appear to be the main physical in-
gredients which are required to understand the phenomenon.

7.2. A Preliminary Model of the Pleistocene Climatic Oscillation

The model of Pleistocene climate proposed by Birchfield er al. (1981)
basically consists of a model for ice sheet flow, which is forced by a particular
accumulation function, coupled to a model of glacial isostatic adjustment.
The model is used to describe the expansion and contraction of a circum-
polar ring of ice whose northern boundary is constrained to the coast of the
polar sea (Fig. 44). The model consists of the following simultaneous partial
differential equations:

3
i-h= . [sinﬂH{éﬂ) }— TVh+qg'h+ A (7.1)

ot r*sinf a0 a0
}F
%j— =—qg W+ (7.2)

In these equations /(8, ¢) is the height of the ice sheet above sea level (where
6 is the latitude), H(#, 1) is ice sheet thickness, and /1'(d, ) is the depth to
bedrock below sea level. Equations (7.1) and (7.2) also contain several im-
portant parameters which Birchfield er al. (1981) specify as

—— 2”}\:1.; (? 3&)
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e 7.3b

o (7.3b)

A = 3(pg)’¢ (7.3¢)
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FiG. 44. Schematic diagram for the paleoclimatic model which consists of an active ice sheet
driven by variations of the effective insolation as modified by the process of isostatic adjustment.

In Eq. (7.3a). 7 is the relaxation time for a harmonic deformation of wave
number ky (Haskell, 1937) of a plane half-space with constant viscosity »
and density p. The parameter ¢ in Eq. (7.3b) is a time scale which depends
upon the density difference Ap between ice and rock, while A in Eq. (7.3¢)
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arises from use of the Glen flow law (e.g.. Paterson, 1981) to describe the
ice flux supported by a given surface slope d//36. The final crucial ingredient
in the Birchfield ef al. (1981) model is the accumulation function 4 through
which the feedback loop in the model is connected. Birchfield et al. assume
that the accumulation rate 4 depends upon the height of the ice sheet above
sea level and take this dependence to be of the form

A=a(l —bh) >0, above the firn line

A=a'(l —bh) <0, below the firn line ]

where @ > 0 and a' < 0 are accumulation and ablation rates, respectively,
at mean sea level. The firn line (e.g., Paterson, 1981) is the intersection of
the snow line with the ice sheet and separates the zones of ablation and
accumulation. Birchfield et al. (1981) introduce solar forcing into their
model by direct variation of the latitudinal location of the snow line by an
amount proportional to the insolation anomaly. They compute the shift in
latitude éx from the expression

sx=—-C8Q (7.5)

where 80 is the insolation anomaly, and determine the constant C from
the present day insolation gradient as

1
C —4
(dQ/dx)
Birchfield er al. (1981) describe several numerical experiments in which

the model (7.1, 7.2) is integrated forward in time using Berger's (1978)
insolation anomaly time series and the parameter values

(7.6)

r=1X103sec! Pa’? a =12 m/yr a.m
C = 43.35 W/m* km a'=-2.7 m/yr )
. They have also assumed a constant value for = in Eq. (7.3a) of
7= 3000 vr (7.8)

based upon the time scale which is observed to dominate the RSL records
in Hudson Bay and Fennoscandia. They therefore implicitly employ a con-
stant effective scale for the ice sheet, in spite of the fact that its actual scale
is time dependent. Forward integration of this model leads to a prediction
of the time variation of ice sheet volume which may be compared directly
to the observed time series of '°0. In Fig. 45 we have reproduced a power
spectrum from their paper of the ice volume history predicted by the model.
Although the response does contain significant power at the lower frequency
end of the spectrum. there does not exist a sharp line at a period of 10° yr
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F1G. 45. Power spectrum of the ice volume time series predicted by the model of Birchfield
et al. (1981). Note that although there is some energy in the low-frequency region of the
spectrum, it is overwhelmed by that at the period of the astronomical forcing and is rather
diffuse rather than concentrated in a well-defined spectral line.

and the response at the input obliquity period strongly dominates, with the
response at the precession period also evident and of strength equal to that
at low frequency.

Birchfield e al. (1981) attempt to reconcile the unsatisfactory result
shown in Fig. 43 by arguing that the spectrum should actually have a “‘red
noise” background added to it which would of course produce a relative
enhancement of the power at low frequency. This argument is of course
entirely ad hoc, and it would be much more satisfactory if it were possible
to design a model which could deliver a much closer facsimile of the ob-
served signal of ice volume fluctuations.

A suggestion as to how this problem might be resolved is contained in
Oerlemans (1980), who employs a model which is virtually identical to that
in Birchfield er al. (1981). The only significant difference is in fact that
Oerlemans has treated the constant relaxation time 7 in Eq. (7.3a) to be a
variable rather than a fixed parameter. Figure 46 shows a result obtained
by Oerlemans (1980) with a model forced at a single period of 20 kvr
(approximately equal to the precession period) both excluding and including
the effect of isostatic adjustment under the ice load and for various choices
of the isostatic adjustment time scale r. This figure establishes the adjust-
ment time 7 as a crucial variable in the model. When the adjustment time
is short the response is almost entirely on the time scale of the forcing (the
result obtained by Birchfield et al.. 1981). On the other hand, when the
time scale is long. 7 = 10 kyr, the ice volume builds up slowly and then
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collapses after about 10° yr, in the way which is suggested by the '30/'0
data. Oerlemans (1980) describes a sequence of Milankovitch experiments
which are somewhat indecisive since they do seem to indicate a fairly pro-
nounced sensitivity to the choice of 7.

We are therefore at something of an impasse. The careful ice volume
predictions by Birchfield et al. (1981), based upon a value of = which is
obtained from the sea level data, show that the model fails to predict the
observed oscillation. The initial calculations of Oerlemans (1980), however,
which use a relaxation time very much in excess of that implied by the sea
level record. seem to suggest that an oscillation of the observed type is
supported under such conditions. These results suggest an explanation in
terms of a more accurate description of the isostatic adjustment process in
the model. We have shown in the preceding sections of this paper that the
sea level record is sensitive only to the shortest relaxation times in the
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Fi1G. 46. Time series of ice volume fluctuations predicted by the model of Qerlemans (1980)
for several different values of the isostatic adjustment time scale r. Note that as 7 increases the
model seems 1o sustain an oscillation with a time scale near 10° yr although there is no forcing
at this period.
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relaxation spectrum of a realistic earth model. We have furthermore shown
that such relaxation spectra also contain certain modes of relaxation with
long characteristic relaxation time which are supported by the internal den-
sity jumps in the mantle at the olivine — spinel and the spinel — post-
spinel phase boundaries. Just as these modes are required to explain the
observed gravity anomalies over the centers of rebound, they may also be
necessary to understand the oscillatory nature of the Pleistocene climate
cvcle. In order to test this hypothesis we are obliged to develop a much
more accurate model of the coupling between ice flow and glacial isostatic
adjustment than that which is embodied in Egs. (7.1) and (7.2). This is
described in the next subsection.

7.3. A Spectral Model with Isostatic Adjustment: The Feedback between
Accumulation Rate and Ice Sheet Topographic Height

The new model which we will develop here is based upon the same
equation for the flow of a thin ice sheet which underlies Eq. (7.1) and can
be expressed in the form

oH_ 1 3

o — (si + .
s T sin 0 96 (sin 8 U) + A0, 1) (7.9)

where the ice flux U is given by

o P {_1%T
Usgtloer i\~ 2

which derives from the Glen flow law (Paterson, 1981), where again / is
the height of the ice above sea level and H is its thickness. It is useful to
expand H = h + h' as before and to rewrite Eq. (7.9) in the form of a
nonlinear diffusion equation as

dh 1 4 ( . 6,‘:) ah’'
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where the nonlinear diffusion coefficient which determines the rate of flow
of the ice sheet is ,

L. H?3 (af‘r)
K=-¢(pg)y —|— ;
51(90) 5 \3 (7.11)

Our generalization of the model embodied in Egs. (7.1) and (7.2) will be
to derive a new equation for 2’ to replace Eq. (7.2) which gives a more
accurate description of the process of glacial isostatic adjustment. In Section
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3 we showed that the radial displacement 2'(6, A, t) produced by an arbitrary
ice sheet of thickness H(f, X, t) could be obtained by direct convolution of
the surface load and the Green’s function for radial displacement defined
in Eq. (3.38). This may be expressed as

h'(8, N\, 1) = J. ar' J.J. dQ u 670, NN, t/tYp H(G, N, t)  (7.12)

Use of the Love number expansion for i, in terms of Legendre polynomials,
the spherical harmonic decomposition of H for an axially symmetric load,
and the addition theorem and orthogonality properties of spherical har-
monics, reduces Eq. {?.12) to the form

hi(n) = T ries J dt'e"" Hy(¢)apy

(21+ 1)
i s
me (20 + 1)

qrH(t)a py (7.13)

where gF have been used here to denote the elastic Love numbers, and the
H, are the spherical harmonic amplitudes in the decomposition of ice thick-
ness. Now Eq. (7.13) may be converted to an exact differential equation to
replace the approximate equation (7.2) by direct time differentiation to
obtain

ah:‘ 1 —sj.' J‘; ’ s_‘;;‘ "N o2
= memﬂ)?{rs)e ] dt' eV H\(t")apy
a a 4 dH‘J
H, 3 .
+mc(2!+l)?r ot o g o 719

A spectral form of Eq. (7.10) may be derived to accompany Eq. (7.14) by
expanding H = h + k', K, h, and 4 in terms of Legendre polynomials. When
these expansions are substituted into Eq. (7.10) and this equation multiplied
through by P, and integrated from cos # = —1 to cos § = +1 we obtain the
following spectral form of the nonlinear diffusion equation:

ohy , o)

At ar = Bf,,me(f)h"(f) + A.‘({) (7'13)

where the interaction matrix By, 1s

2
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+ PL(x)P(x) + Pp(x)P }’.(-‘f)]

(7.16)
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which has elements which depend only upon the basis functions P, and
which may be computed once and for all.

The model embodied in Egs. (7.14) and (7.15) is a spectral model which
replaces Egs. (7.1) and (7.2) and which, although it contains the same physics
as the original model, embodies a much more accurate description of the
isostatic adjustment process which appears to be crucial to understanding
the nature of the 10°-yr oscillation in the continental ice volume record of
the Pleistocene period. Although we will not describe here a set of Milan-
kovitch experiments with this model, we will, in the next subsection, provide
a preliminary analytic exploration of its basic properties which leads to a
particularly simple expression for the period of the free relaxation oscillation
which the model supports.

7.4. An Analysis of the Properties of a Reduced Form of the
Spectral Model

The complexity of the isostatic adjustment equation (7.14) is almost en-
tirelv due to the fact that each harmonic amplitude of the deformation has
several modes of relaxation accessible to it. In this subsection we will focus
on the reduced form of the model which obtains when each harmonic decay
may be approximated by a single exponential relaxation. This approxi-
mation reduces Eqgs. (7.14) and (7.15). after considerable algebra, to

oh, 1—CgE | — CgF
u_=7anKm"}lu£ + —— At
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B aillfal o
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__Caris' 1-C(gf +rlsh
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which may be enormously reduced if we neglect the elastic part of the
response entirely by taking ¢f = 0. This approximation was also invoked
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in Birchfield ez al. (1981) in writing Eq. (7.2) and reduces our spectral
equations (7.17) and (7.18) to the set

Nt = BiuuKn(Oh(8) = Cor'hy + s'T1 = Ciri/sHR, + At)  (7.19)
ah };‘6{ = C;r;h.: + (_’S! + C;r!)h} (7-20)
in which the constants C; are defined by
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The nature of the simplified spectral model embodied in Egs. (7.19) and
(7.20) is most clearly revealed by differentiating Eq. (7.19) with respect to
t and substituting from Eq. (7.20) to eliminate 4’ completely. This leads to
the following second-order equation for /,(¢):

&hy | s'ohy [ & f] I:a }4
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which is relatively innocuous until one introduces the crucial feedback be-
tween ice sheet height and accumulation rate which is described by Eq.
(7.4). We may rewrite Eq. (7.4) in the form

A = a(l — bh) + E(h) (7.23)

where E'is a term that is nonzero only below the firn line. Now the Legendre
decomposition of Eq. (7.23) gives (for [ # 0)

A; = —abh, + E, (7.24)
which reduces Eq. (?.22) to the form
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a
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which is now clearly seen to be the equation for a damped simple harmonic
oscillator which is forced by a nonlinear term on the right-hand side, which
will input energy to the oscillator at frequencies both higher and lower than
those contained in the astronomical forcing, and by the term in E,, which
contains the astronomical forcing itself and some additional but weak A,
dependence. The hypothesis which we wish to put forward here is that the
Pleistocene ice age cycle is simply the free relaxation oscillation described
by the weakly nonlinear damped simple harmonic oscillator equation (7.25).
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With «} the squared free oscillation frequency and A the damping coefficient
of the oscillator, Eq. (7.25) may be rewritten as

h ah a
3321 + 2\ B}J + wBhy = B;,,,,,[a +s'=Cr ’]Kmiz,,
a
+ I:é; + S" ] Cp"!-‘IE,J (726)
where
w} = ab[s' = Cr'] (7.27a)
2A=s'+ ab (7.27b)

All of the parameters a, b, s', r!, and C, are reasonably well known for
the geophysical system so that we are in a position to inquire as to whether
Eq. (7.26) allows a free oscillation and to determine how close this might
be to critical damping. We note first that w7 > 0 as long as s > Cr'. Now
C, is defined in Eq. (7.21) and may be rewritten as

3 Pi

C= G D

(7.28)
where p; and pg are the densities of ice and rock respectively. Also, for a
homogeneous earth model with density pg, Wu and Peltier (1982a) show

that

P e
;+g.|f" 3

so that wf is positive (with ¢f small) if p;/pe < 1. which is of course true.
The squared eigenfrequency of the oscillation w7 is therefore always greater
than zero. Using Egs. (7.28) and (7.29) we may reexpress Eq. (7.27a) as

«f = abs'(1 — pi/pe) (7.30)

-

(7.29)

Ly

on the basis of which we note that as the relaxation time of isostatic ad-
justment 7' = (s")"! decreases. the frequency of the oscillation increases. If
we insert into Eq. (7.30) the parameters emploved by Birchfield et al. (1981)
which give ab = 2.76 X 107 yr™! and 7/ = 3 X 10° yr we predict a period
for the oscillation of

2

o= =~ 25,000 vr (7.31)

wy

which is far too low to explain the observed ice cover fluctuation. In order
to increase the period of the free relaxation oscillation we need to increase
the effective relaxation time of isostatic adjustment. Equally important to
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the correct prediction of the period of the oscillation, however, is the extent
to which the oscillation is damped. Inspection of Eq. (7.27b) shows that the
strength of the damping to which the oscillator is subject decreases as the
relaxation time for isostatic adjustment increases, implying that it will be
much simpler to sustain a large-amplitude oscillation of low frequency than
one of high frequency. Since ab = 2.76 X 107* yr™! from Birchfield et al.’s
data and s’ = 3.3 X 107* yr~' we can considerably reduce the damping by
increasing the isostatic adjustment time scale. To see how close the system
in Birchfield e al. (1981) is to critical damping we simply compare X to
wg. For their parameters we find

A= 31xX10%yr! wo=2.5X 107* yr! (7.32)

so that the system is in fact overdamped and would respond only sluggishly
to forcing at the natural oscillation frequency. With the approximation
pi/pe <€ 1, critical damping with A ~ w, is obtained for s/ = ab and subcritical
damping for s’ < ab. The relaxation time r, = (ab)™' is about 3600 yr.
Unless the isostatic adjustment time scale is much in excess of this value
the damping in the system will be too strong to sustain an oscillation. This
provides a very nice explanation as to why Oerlemans (1980) required a
relaxation time in excess of about 10* yr before any relaxation oscillation
was excited by the solar forcing. With 7, = 10%/yr we predict a T} of ap-
proximately 5 X 10* yr, which increases to 10° yr for 7, = 4 X 10* yr.

Because the parameters @ and b are reasonably well known from mete-
orological observations and the viscoelastic properties of the earth are
equally well constrained by geophysical observations, our physical model
of the Pleistocene climatic oscillation which is embodied in Egs. (7.14) and
(7.15) has no adjustable parameters. On the basis of the analysis of a sim-
plified version of the general model discussed in this subsection, we have
good reason to believe that it will be able to explain the observed oscillation
when the required Milankovitch experiments are performed with it. In order
to deliver the observed periodic fluctuation, however, we must rely upon
the same long relaxation time modes of realistic viscoelastic earth models
which were required to explain the free-air gravity data discussed in Section
5. Only from these modes can we obtain the long characteristic relaxation
times which are required to support the observed oscillation.

8. CONCLUSIONS

In the main body of this paper we have provided a systematic develop-
ment of the new theoretical model which has been designed to describe the
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phenomena which are associated with glacial isostatic adjustment. This
model is based upon a linear viscoelastic constitutive relation between stress
and strain, which I have referred to as the generalized Burgers relation, that
appears to be uniformly valid in time in the sense that it reconciles not only
long time scale adjustment data but also the observations of body wave and
free oscillation seismology. In the low-frequency limit which is visible to
postglacial rebound, the model behaves like a Maxwell solid so that time-
dependent processes are eventually governed by a Newtonian viscous re-
sponse. By fitting the model to the observables of glacial isostatic adjustment
we may infer the variation of mantle viscosity with depth. There are three
complementary kinds of data which have proved to be most useful for this
purpose: (1) radiocarbon-controlled histories of RSL, (2) surface and satellite
observations of the “anomalous™ gravitational field related to deglaciation
centers, and (3) certain observed properties of the variation of the earth’s
rotation.

The principal success of the new theoretical model lies in its ability to
explain simultaneously the RSL and free-air gravity data. No previous
model of glacial isostasy has ever been successful in this regard. The success
of the new theory with respect to these two sets of data is based upon the
fact that realistic viscoelastic models of the earth’s interior support an entire
spectrum of normal modes of viscous gravitational relaxation for each de-
formation wave number, rather than the single mode which is found for
homogeneous earth models. In order to reveal this property of the visco-
elastic models clearly, we have been obliged to cast the analysis in terms
of a normal-mode formalism and we have discussed the intimate connection
between this formalism and that for the normal modes of elastic gravita-
tional free oscillation which is so familiar to seismologists. The totality of
normal modes, consisting of those which are essentially elastic and oscil-
latory and those which are essentially viscous and exponentially decaying,
are represented by points in the complex plane of the Laplace transform
variable s. Normal modes of viscous gravitational relaxation are located on
the negative real s axis. The spectrum of such modes spans a wide range
of relaxation times, and those with the longest relaxation times, which exist
in models which have essentially uniform mantle viscosity, turn out to be
crucial to understanding the ability of realistic models to simultaneously
explain RSL and free-air gravity data. These modes are supported by the
density jumps in the mantle associated with the olivine — spinel and the
spinel — perovskite + magnesiowustite transitions at 420 km and 670 km
depth, respectively. Because of the relatively efficient excitation of these
modes in models with weak viscosity stratification, the response to a loading
event of large spatial scale is initially dominated by a relatively rapid re-
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laxation with characteristic time scale near 2 X 10° yr, which is followed
after about 8 X 10° yr by a very sluggish approach to the isostatic state on
a time scale of about 10° yr. This is precisely the behavior which is required
to reconcile the RSL data from the Laurentide region, which reveal the
short initial time scale only, and the free-air gravity data, which indicate
well over 100 m of uplift remaining in the central depression. Models with
any substantial increase of viscosity with depth are completely ruled out by
both the RSL and the free-air gravity observations.

Because of the crucial importance of the modes with long relaxation times
in the new theory, we have had to pay particular attention to the question
of the influence of the assumption of initial isostatic equilibrium upon the
theoretical predictions of RSL and free-air gravity data. We introduced the
novel idea in the context of isostatic adjustment studies that the oxygen
isotope stratigraphy from deep-sea sedimentary cores could be employed
to constrain the previous history of loading and unloading and thus provide
us with the essential knowledge necessary to obtain a quantitative estimate
of the importance of initial disequilibrium. These data have very clearly
established that at least the last 2 X 10° vr of the Pleistocene period have
been characterized by a continuous series of ice sheet advances and retreats
with successive interglacials separated by a regular time interval near 10°
yr. Our analysis of the extent to which RSL and free-air gravity data are
influenced by initial disequilibrium established that the former measure-
ments are relatively insensitive to disequilibrium effects whereas the latter
are influenced to a nonnegligible degree. This demonstration of the com-
plementary nature of RSL and free-air gravity information is very important
to understanding the quality of the constraint which these observations
provide upon the mantle viscosity profile. When the two sets of data are
combined and the influence of initial disequilibrium is taken into account,
the data require a mantle viscosity profile in which the viscosity of the upper
mantle is near 10°! Pa sec and that of the lower mantle is near 3 X 10°
Pa sec, so that viscosity increases by a factor of about three across the phase
transition at 670 km depth. This inference is entirelyv based upon a simple
two-layer representation of the variation of viscosity in the sublithospheric
region. If some modest increase of viscosity were introduced in the upper
mantle (say across the 420-km boundary). then that allowed at the 670-km
boundary would be reduced. In terms of the new theoretical model, the
observed free-air gravity anomalyv over Hudson Bay is a very sensitive dis-
criminant between viscosity models.

As we discussed in Section 6 of this paper, it is possible to test the validity
of the viscosity profile inferred from the adjustment data through analysis
of certain characteristic properties of the earth’s rotation. We showed that
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both the secular drift of the rotation pole evident in the ILS-IPMS pole
path and the observed nontidal acceleration of the earth’s rotation are ex-
plicable in terms of glacial-deglacial forcing. When the load cycle inferred
from the oxygen isotope record is employed through the Euler equations
to predict these observations, we find, in the case of the nontidal acceler-
ation. that two quite widely separated values of the mean mantle viscosity
are compatible with the observations. The allowed values of v are near
1.0 X 10*' Pa sec and near 3 X 10** Pa sec. This basic ambiguity in the
interpretation of this datum can be removed only by invoking the RSL and
gravity observations, which strongly reject the larger of the two possible
roots. The smaller root is beautifully compatible with the isostatic adjust-
ment data, however, so that the observed history of the earth’s rotation
provides information which enables us to verifv the validity of the mantle
viscosity profile inferred from them.

Our analysis of the speed of polar wander observed in the ILS pole path
showed that this datum had a markedly different dependence upon the
parameters of the viscoelastic model than the nontidal acceleration. It was
shown to be sensitive not only to mean mantle viscosity but also to litho-
spheric thickness. Although a low value of the mean mantle viscosity is
again preferred by this datum, at the time of writing the trade-off between
the effect of lithospheric thickness and that of the viscosity stratification has
been insufficiently investigated to allow any unequivocal statement to
be made.

The last section of this article was devoted to an application of the new
theory of glacial isostasy to an important problem in paleoclimatology which
has to do with the explanation of the observed oscillation of ice cover on
the 10%-yr time scale which is so apparent in the oxygen-isotope stratigraphy
of sedimentary cores taken from the deep ocean basins. We discussed two
recent attempts by Oerlemans (1980) and Birchfield et al. (1981) to explain
this oscillation using a theory which involved coupling of a model of ice
sheet flow subject to insolation forcing with a model of glacial isostatic
adjustment. Although the model employed in both these papers was essen-
tiallv the same. the authors came to diametrically opposite conclusions
concerning the plausibility of the proposed mechanism. Qerlemans (1980)
found that oscillation was possible on the required time scale but only if
the relaxation time for isostatic adjustment of a Laurentide-scale load was
taken to be greater than 10* yr. Birchfield et al. (1981) used a short relaxation
time for isostatic adjustment of 3 X 10® yr which was chosen midway be-
tween those apparent from the sea level records in Hudson Bay and the
Gulf of Bothnia. Their model did not produce the observed oscillation,
though it did deliver energy to the low-frequency range due to nonlinear
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processes connected with ice flow that were described through the Glen flow
law. In Section 7 we derived a theory which incorporated the same basic
physical ingredients but which included a correct description of the isostatic
adjustment mechanism. In both Oerlemans (1980) and Birchfield et al.
(1981) the isostatic adjustment component of the model was only crudely
approximated though it is crucial to the oscillation. The general form of
the spectral model which we derived contained the complete spectrum of
modes of relaxation supported by realistic earth models which includes
those with long relaxation times which are required to understand the gravity
data over Wisconsin Laurentia. These modes could also provide the long
relaxation times which are required to support the Pleistocene climatic os-
cillation. A reduced form of the spectral model was also derived and ana-
lyzed to obtain a damped simple harmonic oscillator equation for each
component of the ice height spectrum. This equation shows that the period
of the relaxation oscillation supported by the feedback between the accu-
mulation rate and ice sheet topographic height may be expressed analytically
in terms of the time scale of isostatic adjustment and that determined by
the change of the accumulation rate per meter increase of topographic
height. Our analysis showed that it would be easiest to oscillate those har-
monics of the system with longest characteristic decay time since these had
the smallest damping coefficients. The basic ideas in this new theory are
the following:

(1) The longest relaxation times necessary to support an underdamped
oscillation are supported by the radial structure of realistic viscoelastic
earth models.

(2) Energy is forced from the high-frequency solar input to the low nat-
ural frequency of the oscillator by the action of nonlinearity due to
ice sheet flow.

(3) The energy appears as a sharp peak in the ice volume record because
the system is resonant at the natural frequency of the free relaxation
oscillation.

Our analysis of the reduced form of the equations of the spectral model
shows that this scenario is quite realistic. The Milankovitch experiments
which are required to provide a detailed demonstration of the plausibility
of this idea will be reported elsewhere.

One idea which we have not developed at all in this article. but which
is nevertheless extremely important, concerns the implications of the ob-
served dynamic response of the earth to ice age forcing to our understanding
of the mantle convection process. This point has been discussed by Peltier
(1980b, 1981b). Of most concern is the question as to whether or not the
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magnitude of the viscosity inferred from the rebound data is compatible
with theories of the thermal convection process which is responsible for
plate creation and destruction. The answer to this question is an unambig-
uous ves; in fact, one may argue as in the above-cited references that if the
mantle viscosity were much different from that inferred from the rebound
data then it would be very difficult indeed to produce a theory of the mantle
convective circulation. Of equal importance to models of the convective
circulation is the inference that there is an increase, by about a factor of
about three, of the viscosity across the phase transition at 670 km depth.
Although this increase is completelv inadequate to confine convection to
the upper mantle it could be sufficient to explain the compressive nature
of deep seismic focal mechanisms (Isacks and Molnar, 1971). If the upper
and lower mantles are filled with separate convective circulations, as some
geochemical evidence has been taken to suggest (e.g., De Paolo, 1981). then
there should exist a very sharp thermal boundary layer at 670 km depth,
since heat could be transported across the boundary only by conduction
and the thermal conductivity is low. If the creep activation energy does not
change significantly from one side of the phase change to the other (Sammis
et al., 1977), then the expected sharp increase in temperature (Jeanloz and
Richter, 1979, suggest 500°C) would be accompanied by a decrease of vis-
cosity by several orders of magnitude, and this is not observed. Therefore,
either there is no thermal boundary layer at 670 km depth and the mantle
convects throughout its volume or there is a sharp increase of creep acti-
vation energy at 670 km depth which just offsets the decrease of viscosity
which would otherwise be produced by the temperature increase. The only
systematic analysis of the expected variation in the creep activation energy
is that by Sammis et al. (1977) which would strongly suggest that the former
possibility is correct. This may not be definitive, however, so that direct
experimental measurement of the creep activation energy of the perov-
skite + magnesiowustite phase would be invaluable.

Peltier (1980b. 1981b) has given a series of arguments based upon dy-
namical considerations which also support the idea of whole-mantle con-
vection. Of crucial importance among these is that connected with the
expected dynamical effects of phase transitions. Richter (1973) has shown
that convection through a phase boundary with negative Clapeyron slope
such as that at 670 km depth is not significantly impeded by the phase
transition. In subsequent analyses the advocates of separate upper and lower
mantle circulations have therefore been obliged to invoke the idea that the
670-km discontinuity was a chemical boundary across which there was a
significant change of the mean atomic weight of mantle material. A chemical
layering would of course prove enormously efficient at preventing convec-
tive mixing across the boundary (Richter and Johnson. 1974). Until the
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new high-pressure diamond anvil data became available from the group at
the Carnegie Institute (Yagi et al., 1979), it was quite possible that the 670-
km boundary could have been a chemical boundary since no direct pet-
rological data were available at such high pressures. The new data clearly
suggest that this boundary is an equilibrium phase boundary, however, and
furthermore show that all of the seismically observed density increase is
explicable in terms of the transformation from the less dense to the more
dense phase. It would therefore appear that there is no dynamical mecha-
nism available to explain how the separation between separate upper mantle
and lower mantle circulations could possibly occur. The only possibility
which remains open here, as far as I can see, is that previous calculations
of the effect of phase boundaries upon convection are seriously in error.
One must either give up the idea of separate upper mantle and lower mantle
circulations. and face the geochemical consequences, or demonstrate that
convection cannot penetrate a phase boundary with adverse Clapeyron
slope. On the basis of this line of argument we can see that the observation
from postglacial rebound that the viscosity of the mantle is essentially con-
stant has forced a rather radical rethinking of ideas concerning the mantle
convective circulation since it has demonstrated that there is no purely
mechanical barrier to the penetration of convection at 670 km depth.
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